

ADDENDUM NO. 1

TO
CONTRACT DOCUMENTS
FOR
WEST ANTIOCH CREEK SILT REMOVAL
IN
ANTIOCH, CALIFORNIA
P.W. 201-5A

ISSUED June 16, 2023

This Addendum No. 1 must be signed by the bidder and attached to the CONTRACT PROPOSAL PACKAGE for consideration by the City. The City reserves the right to disregard any proposal, which does not include this Addendum. The City may waive this requirement at its sole discretion.

SEE ATTACHED ADDENDUM ITEMS

Prepared By:	PROFESSIONAL PROFESSIONAL RIVER W. BROWN No. 85299 CIVIL OF CALIFORNIA
Prepared By:	No. 85299

BIDDER'S CERTIFICATION

I acknowledge receipt of this Addendum No. 1 and accept all conditions contained herein.

Bidder	By:

Response to Planholder RFIs

The following questions were submitted and classified as RFI #1.

<u>Question:</u> The project specs state that there is a 2-year warranty but the performance bond information states 1 year. Is it a 2-year or 1-year warranty on this project? <u>Answer:</u> One year

<u>Question:</u> Which permits are the contractor responsible for? Is there cost associated with these permits?

<u>Answer:</u> Refer to Specification 01060 Section 1.3.A.1. Contractor may inquire with listed agencies for associated costs.

<u>Question:</u> Bid Item 8 is for the Off haul of material to Kettleman Landfill. What classification or waste code should be assumed for this item?

<u>Answer:</u> This item is reserved for the potential scenario that excavated materials will not be accepted at local landfills and includes materials considered hazardous.

Question: Regarding bid item 8, the landfill bills disposal by the ton, can the units of Bid Item 8 be changed to Tons instead of CY?

Answer: The units will be changed to tons. See contract document modifications below.

<u>Question:</u> Is Bid Item 8 assumed to be an Adder to Bid item 6? Or is this an alternate price?

Answer: Bid Item 8 is separate from Bid Item 6.

<u>Question:</u> Is there any Environmental (Chemical) data on the existing soil to be removed and disposed of?

<u>Answer:</u> An unscientific, nondefinitive sampling of the area was completed. The data has been included as a part of this response.

<u>Question:</u> The plans show Sedimentation Filter Bags for filtering temporary dewatering. However, the specs seem to suggest a more robust water treatment system to deal with contaminated groundwater. Can you clarify what treatment methods are required for the dewatering scope for bidding purposes?

<u>Answer:</u> Sedimentation filter bags may be used for temporary dewatering. See contract document modification below.

<u>Question:</u> Will all water from the diversion and from within the excavation area be discharged to the downstream channel?

Answer: Yes

<u>Question:</u> Is there any access into the work area from the East side of the channel? <u>Answer:</u> Refer to the access points and Work Area Limits shown in the Contract Drawings.

<u>Question:</u> Assuming we adhere to the requirements of the Exclusionary Fencing Note #3 from sheet C-2, can a temporary access route between the maintenance road and TCE be constructed to allow for equipment to move between the two areas for stockpiling material without driving onto the public right-of-way?

<u>Answer:</u> Yes but full structural slope restoration, fence restoration, and TCE restoration to existing conditions or better must occur after work is complete. Note there shall be no stockpiling of material on the access road.

Question: Is the channel tidally influenced?

Answer: Yes

<u>Question:</u> Please provide the anticipated flow rates (GPM or CFS) of the existing channel to dewater as I am unable to find this in the contract documents. This information is necessary to determine the size of the pumps necessary to handle the dewatering.

<u>Answer:</u> The Contractor shall determine the appropriate bypass system necessary to accomplish the work. See newly added specification section.

<u>Question:</u> Will the City be providing a biologist or is the contractor responsible for providing one? Is the cost of a biologist to be paid by the city or the contractor? <u>Answer:</u> The City Biologist will be contracted directly by the City.

<u>Question:</u> The specifications state that we have 110 working days and that the work in water end date is 10-15-2023. Will we be allowed to work on the access road and the stockpile area after 10-15-23 if we are still within the 110 working day limit?

<u>Answer:</u> Yes.

Question: Regarding the above-mentioned project, Pg. TOC-iii of the Table of Contents for the Appendices as well as Section 02140 – Dewatering make reference to the CDFW 1600 Streambed Alteration Agreement provided in Appendix A. However, upon review of Appendix A, the CDFW agreement is not provided. Only the Army Corps permit and CVRWQCB 401 Water Quality Cert are provided in Appendix A. Please provide a copy of the CDFW 1600 Streambed Alteration Agreement.

Answer: CDFW 1600 Streambed Alteration Agreement is attached to this Addendum. Contractor is strongly encouraged to read all permit requirements.

<u>Question:</u> Who is responsible for survey? Pg. B-8, Section G states the Owner will provide survey but Page 01400-2 of Quality Control states the Contractor shall submit a Quality Assurance Program which includes construction surveying and staking.

<u>Answer:</u> Contractor shall provide any surveying and staking as necessary.

<u>Question:</u> Will the City provide a Qualified Biologist or is the contractor to include the costs of a biologist in its bid? There is conflicting language in the specifications. <u>Answer:</u> See answer to question above.

<u>Question:</u> Line item 12 specifies 12 cubic yards of unaccepted Soils being hauled to Kettleman City. Has testing been done to determine this quantity and if so, is a copy of the report available to Bidders? Will the City require a separate price for additional material?

<u>Answer:</u> Definitive tests have not been conducted. Quantities greater than 12 cubic yards requiring disposal at Kettleman City will require a change order.

<u>Question:</u> The bid documents state that verification of excavation amounts will be by hauling manifest. The payment for this is based on cubic yards but hauling manifests are by the ton. What conversion rate will the City be using to determine quantities for payment on this item?

<u>Answer:</u> The units will be changed to tons. The units will be changed to tons. See contract document modifications below. This applies only to Bid Item 8.

Question: What is the depth of the water in the pond where a coffer dam is to be installed at station 0+80.

Answer: Exact depth is unknown. Assume six feet or less.

<u>Question:</u> Is there a specification for the coffer dam? <u>Answer:</u> No. Cofferdam must meet permit requirements.

Addendum Item	Description
1-1	Section 01025 – Measurement and Payment, paragraph 1.3.I: REPLACE, "(PER CUBIC YARD)" with, "(PER TON)".
1-2	Invitation to Bidders – Schedule of Bid Prices: REPLACE the Unit for Item 8,"CY" with, "TN".
1-3	Section 02140 – Dewatering, paragraph 3.3.B: DELETE, "Contaminated groundwater shall be treated prior to disposal." from the end of the paragraph.
1-4	Table of Contents – Technical Specifications, Division 1: ADD, "SECTION 01035 – Owner Provided Information".

ATTACHMENT 1: California Department of Fish and Wildlife 1600 Streambed Alteration Agreement

CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE

BAY DELTA REGION 2825 CORDELIA ROAD, SUITE 100 FAIRFIELD, CA 94534

STREAMBED ALTERATION AGREEMENT

EPIMS-CCA-32699-R3 West Antioch Creek

CITY OF ANTIOCH
WEST ANTIOCH CREEK SILT REMOVAL PROJECT

This Streambed Alteration Agreement (Agreement) is entered into between the California Department of Fish and Wildlife (CDFW) and the City of Antioch (Permittee) as represented by Cornelius Johnson.

RECITALS

WHEREAS, pursuant to Fish and Game Code section 1602, Permittee notified CDFW on August 15, 2022, that Permittee intends to complete the project described herein.

WHEREAS, pursuant to Fish and Game Code section 1603, CDFW has determined that the project could substantially adversely affect existing fish or wildlife resources and has included measures in the Agreement necessary to protect those resources.

WHEREAS, Permittee has reviewed the Agreement and accepts its terms and conditions, including the measures to protect fish and wildlife resources.

NOW THEREFORE, Permittee agrees to complete the project in accordance with the Agreement.

PROJECT LOCATION

The project is located on West Antioch, tributary to the San Joaquin River, in the City of Antioch, County of Contra Costa, State of California. Latitude 38.014028, Longitude -121.82446. See Exhibit A – Project Location Map.

PROJECT DESCRIPTION

The project is limited to removal of accumulated material and sediment from Reach B of the West Antioch Creek (creek) between West 8th Street and West 4th Street, and installation of rock slope protection (RSP) at one location over the course of one work season. The project will remove approximately 3,000 cubic yards of accumulated debris, vegetation, and sediment, along 1,050 linear feet of the creek to expose the original engineered channel bottom at a maximum depth of 12 feet from baseline conditions. 25 cubic yards of RSP covering 0.005 acre of creek will be installed in ruderal vegetation below the top of bank. See Exhibit B for design plans and Exhibit C for project impacts.

Ver. EPIMS 03/08/2022

Temporary cofferdams, dewatering pumps, and discharge piping will be implemented to dewater work areas and divert flow downstream. Cofferdams consisting of gravel-fill bags will be placed upstream to temporarily dewater the project area. Any residual flows will be pumped, treated for turbidity, and released directly downstream of the work area.

A temporary construction easement will be obtained from the adjacent property owner (located at Latitude 38.013001, Longitude -121.824874) to allow for staging and soil stockpiling. Equipment access to the site is available from 6th Street and 4th Street, and non-heavy equipment access is available from 10th Street.

Sediment and vegetation will be removed by excavation using heavy machinery, including excavators and front-end loaders, operated from the existing maintenance access adjacent to the western channel bank. Excavators will remove the sediment by reaching in from the top of bank. The sediment removal area and new low flow channel will be constructed so that it can be accessed from the existing road, and equipment will not need to enter the creek. The removed sediment will be stored on plastic sheets in the designated staging area, set out to dry, and later tested to determine the final off-site disposal location (see Exhibit D).

Vegetation on top of the creek bank will be mowed to provide access, as needed. No grubbing or ground disturbance will occur to the existing access road. After construction, all areas of bare soils or disturbed areas will be hydroseeded with a native seed mix and live plantings will be installed along the new channel side slopes.

PROJECT IMPACTS

Existing fish or wildlife resources the project could substantially adversely affect include:

Scientific Name	Common Name	Status
Amphibians		
Multiple species	Native amphibians	
Birds		
Rallus longirostris	California clapper rail	SE, FP, FE
Rallus obsoletus	California Ridgway's rail	SE, FP, FE
Sternula antillarum browni	California least tern	SE, FP, FE
Laterallus jamaicensis coturniculus	California black rail	ST, FP
Elanus Leucurus	White-tailed kite	FP
Athene cunicularia	Burrowing owl	scc
Circus cyaneus	Northern harrier	SSC
Coturnicops noveboracensis	Yellow rail	SSC

Geothypis trichas sinuosa	Saltmarsh common yellowthroat	SSC
Lanius Iudovicianus	Loggerhead shrike	SSC
Melospiza melodia maxillaris	Suisun song sparrow	SSC
Melospiza melodia pop. 1	Song sparrow ("Modesto" population)	SSC
Pogonichthys macrolepidotus	Sacramento Splittail	SSC
Multiple species	Native birds	
Fish		
Spirinchus thaleichthys	Longfin smelt	ST, FC
Acipenser medirostris pop. 1	Green sturgeon – southern DPS	FT
Oncorhynchus mykiss irideus pop. 11	Steelhead - Central Valley DPS	FT
Oncorhynchus tshawytscha	Chinook salmon	SSC
Archoplites interruptus	Sacramento perch	SSC
Pogonichthys macrolepidotus	Sacramento splittail	SSC
Multiple species	Native fish	
Invertebrates		
Multiple species	Native invertebrates	
Mammals		
Reithrodontomys raviventris	Salt-marsh harvest mouse	SE, FP, FE
Antrozous pallidus	Pallid bat	SSC
Castor canadensis	American beaver	
Multiple species	Native mammals	
Reptiles		
Thamnophis gigas	Giant garter snake	ST, FT
Emys marmorata	Western pond turtle	SSC

Multiple species	Native reptiles	
Plants		
Blepharizonia plumosa	Big tarplant	1B.1
Lilaeopsis masonii	Mason's Lilaeopsis	1B.1
Chloropyron molle ssp. molle	Soft salty bird's-beak	1B.2, FE
Lathyrus jepsonii var. jepsonii	Delta tule pea	1B.2
Symphyotrichum lentum	Suisun marsh aster	1B.2
Limosella australis	Delta mugwort	2B.1
Multiple species	Native vegetation	

Notes: FC = federal candidate species under the Federal Endangered Species Act (FESA); FE = federally endangered under FESA; FT = federally threatened under ESA; SE = state endangered under the California Endangered Species Act (CESA); SCE = state candidate for listing as endangered under CESA; SCT = state candidate for listing as threatened under CESA; SFP = state fully protected; SSC = state species of special concern; ST = state threatened under CESA. CNPS ranking system: 1B = plants rare, threatened, or endangered in California and elsewhere; 2B = plants rare, threatened or endangered in California, but common elsewhere.

The adverse effects the project could have on the fish or wildlife resources identified above include:

- Chronic change in channel morphology related to sediment removal
- Temporary increased turbidity and reduced water quality
- Temporary short-term release of contaminants incidental from construction
- Decline of channel habitat
- Disruption to nesting birds and other wildlife
- Disruption, injury, or direct take of terrestrial and aquatic species
- Dewatering and alteration of water velocity and flow
- Removal of approximately 3,000 cubic yards of sediment and vegetation
- Temporary impact to 0.63 acre of freshwater marsh vegetation
- Temporary impact to 0.10 acre of creek channel
- Permanent impact to 0.005 acre of creek channel

MEASURES TO PROTECT FISH AND WILDLIFE RESOURCES

1. Administrative Measures

Permittee shall meet each administrative requirement described below.

1.1. <u>Documentation at Project Site</u>. Permittee shall make the Agreement, any extensions and amendments to the Agreement, and all related notification materials and California Environmental Quality Act (CEQA) documents, readily available at the project site at all

- times and shall be presented to CDFW personnel, or personnel from another state, federal, or local agency upon request.
- 1.2. <u>Providing Agreement to Persons at Project Site</u>. Permittee shall provide copies of the Agreement and any extensions and amendments to the Agreement to all persons who will be working on the project or on behalf of Permittee, including but not limited to contractors, subcontractors, inspectors, and monitors.
- 1.3. <u>Notification of Conflicting Provisions</u>. Permittee shall notify CDFW if Permittee determines or learns that a provision in the Agreement might conflict with a provision imposed on the project by another local, state, or federal agency. In that event, CDFW shall contact Permittee to resolve any conflict.
- 1.4. Consistency with Notification. All work shall be completed in accordance with the plans, figures, designs, and project description submitted with the project's Notification package, unless the project has been modified through mutual agreement between CDFW and the Permittee. Permittee agrees to notify CDFW of any modifications made to the project plans and documents that were submitted to CDFW on August 15, 2022. If Permittee wishes to modify the project described in this Agreement, CDFW shall first be notified in writing, and an Amendment or new Notification may be required.
- 1.5. <u>Project Site Entry</u>. Permittee agrees that CDFW personnel may enter the project site at any time to verify compliance with the Agreement.
- 1.6. Access to Property Not Owned by Permittee. This Agreement does not grant the Permittee authority to enter, use, or otherwise encroach upon the property rights of individuals, or organizations not party to this Agreement. The Permittee shall obtain written authorization from outside parties, in accordance with applicable laws, if access to property not owned by the Permittee is necessary.
- 1.7. <u>Final 100% Design Plans</u>. Permittee shall submit final 100% engineering design plans, stamped, and signed by a qualified licensed professional engineer, to CDFW for review and acceptance, no later than 30 working days prior to initiating construction activities under this Agreement. Once approved, these designs shall be attached as Exhibit B to this Agreement and fully incorporated herein by reference. An Amendment to this Agreement may be necessary if changes in project design occur.
- 1.8. Notification of Work Commencement/Completion to CDFW. Permittee shall notify CDFW at least 7 days prior to the initiation of construction and within 24 hours of the completion of construction. Initial notification shall include the name(s) and contact information of the person(s) overseeing the project site, as well as a project schedule that includes the start date, estimate end date, weekly workdays, and hours of operation. Permittee shall submit the notification by emailing the CDFW staff person listed in the Contact Information Section of this Agreement.
- 1.9. <u>Unauthorized Take</u>. This Agreement does not authorize the take, including incidental take, of any State or federally listed threatened or endangered species, or of species that are otherwise protected under Fish and Game Code. "Take" means "to hunt, pursue, catch, capture or kill or attempt to hunt, pursue, catch, capture, or kill" (Fish & G. Code, § 86). Permittee may elect to, as prescribed in the California and U.S. Endangered Species Acts, obtain take coverage for State and federally listed species prior to commencement of the

project. This includes State listed or Fully Protected Species, or any native plant species listed as rare under the Native Plant Protection Act (Fish and Game Code, § 1900 et seq.; Cal. Code Regs., tit. 14, § 670.2); any species that is listed or is a candidate for listing under the California Endangered Species Act (Fish and Game Code, § 2080 et seq.; Cal. Code Regs., tit. 14, §§ 670.2, 670.5); or any fully protected species (Fish and Game Code, §§ 3511, 4700, 5050, 5515). Liability for any take of such species remains the responsibility of Permittee for the duration of the project. Any unauthorized take of listed species may result in prosecution and nullification of this Agreement.

- 1.10. <u>Additional Information</u>. Prior to the commencement of project activities Permittee shall provide the following information to CDFW for written acceptance:
 - 1.10.1. A sediment management plan outlining the delivery and/or disposal locations of excavated sediment. The delivery and/or disposal locations shall be in an upland location away from watercourses, streams, or any other water feature that may accumulate or transport project related sediment. If the delivery and/or disposal locations are owned by a party other than Permittee, then Permittee shall provide CDFW with written approval from the property owner accepting the sediment. The sediment management plan shall include truck logs referencing dates of delivery and volumes of daily delivery. The total cumulative volume of sediment disposed of and/or delivered as part of the project shall not exceed the approximate maximum estimated volume permitted for removal under this Agreement without prior approval from CDFW. The sediment management plan shall be included in its entirety as part of this Agreement as Exhibit D.

2. Avoidance and Minimization Measures

To avoid or minimize adverse impacts to fish and wildlife resources identified above, Permittee shall implement each measure listed below.

Work Periods

- 2.1. <u>Seasonal Work Window</u>. To minimize adverse impacts to fish and wildlife and their habitats, project activities within the channel shall be limited from **July 16 to October 15**. Installation of erosion control devices and site remediation activities are excluded from seasonal work period restrictions.
- 2.2. <u>Daily Work Window</u>. Permittee shall terminate all project activities covered under this Agreement **30 minutes** before sunset and shall not resume until **30 minutes** after sunrise. Permittee shall use the geographic area's sunrise and sunset times established by the U.S. Naval Observatory Astronomical Applications Department, which can be found at: <u>Astronomical Applications (Navy.mil)</u>.
- 2.3. Work in Dry Weather Only. Work within the creek and associated riparian corridor shall be restricted to periods of dry weather. Precipitation forecasts and potential increases of creek flow shall be considered when planning construction activities. No work shall occur during precipitation events (i.e., 0.25-inches or more within a 24-hour period). Construction activities shall cease, all equipment and materials shall be removed from the channel, and all associated erosion control measures shall be in place at least 12 hours prior to the onset of precipitation. Construction activities halted due to precipitation may resume when precipitation ceases, the National Weather Service 72-hour weather forecast indicates a

- less than 30 percent chance of precipitation, and after a **dry-out period of 48 hours** after the conclusion of the precipitation event. The National Weather Service forecast can be found at: National Weather Service.
- 2.4. <u>High Tide Restriction</u>. No project activities shall occur within 50 feet of tidal marsh habitat for the two (2) hours before and after extreme high tides (6.5 feet or above as measured at the Benicia-Martinez Bridge), or where there is potential for tidal species to move to higher ground, particularly when adjacent marsh is flooded. Tide predictions can be found at:

 <u>Tide Predictions NOAA Tides & Currents.</u>
- 2.5. Work Window Variance Requests. If Permittee needs more time to complete project activities, work may be authorized outside of the work period and extended on a weekly basis by CDFW. Permittee shall submit a written request for work period variance to the CDFW staff person listed in the Contact Information Section of this Agreement. The work period variance request shall: (1) describe the extent of the work already completed; (2) detail the activities that remain to be completed; (3) detail the time required to complete each of the remaining activities; and (4) provide photographs of both the current work completed and the proposed site for continued work. Work period variances are issued at the discretion of CDFW. CDFW will review the written request to work outside of the established work period and may require additional measures to protect fish and wildlife resources as a condition for granting the variance. Any such additional measures shall then be made part of this Agreement.

Biological Monitoring

- Biological Personnel. At least 30 days prior initiating biological surveys within the project 2.6. areas, Permittee shall submit the names, qualifications, and resumes of all biological personnel involved in conducting survey and/or monitoring work to CDFW for review and written approval. Resumes shall include, at minimum: educational background, experience with focal species and description of experience with each focal species (e.g., tagging, handling, observational surveys, electrofishing, relocation, auditory surveys, etc.), including number of hours/days/years of experience per species, the project names of where this experience was earned accompanied by any related permit numbers. trainings/workshops, and certificates or related credentials. Include experience with different life stages of a species when applicable. Pre-construction surveys and project implementation shall not commence until the biological personnel have received written approval from CDFW. To expedite the review period of biological personnel assigned to the project, Permittee may elect to complete the Biologist Resume Form (Exhibit F) to accompany the provided resumes. Biological personnel are defined under this Agreement as follows:
 - 2.6.1. A Qualified Biologist as an individual who shall have a minimum of five years of academic training and professional experience in biological sciences and related resource management activities with a minimum of two years conducting surveys for the special-status species listed in this Agreement potentially present within the project area.
 - 2.6.2. A Qualified Botanist is an individual who shall have a minimum of five years of academic training and professional experience in biological sciences and related resource management activities focusing on rare or special-status plant species.

The Qualified Botanist shall have a minimum of two years of experience conducting field surveys for rare or special-status plant species in California and hold experience observing the species potentially present within the project area.

- On-Site Education Program. Permittee shall conduct a pre-construction training program 2.7. for all employees, contractors, or personnel working within the project site prior to performing any work. The program shall consist of an in-person presentation from the Qualified Biologist hosted at the project location. Digital hosting of the meeting shall not occur. The presentation shall include, at minimum, a discussion of the biology of the habitats and special-status species identified in this Agreement and those with potential to be present at the project site, which shall include a walkthrough. The Qualified Biologist shall also include, as part of the education program, information about the distribution and habitat needs of any special-status species that may be present, legal protections for those species, penalties for violations, and project-specific protective measures included in this Agreement. Interpretation shall be provided for non-English speaking employees. contractors, or personnel otherwise working on the project site, prior to their performing any work at the project site. Upon completion of the education program, employees. contractors, or personnel otherwise working on the project sites shall sign a form stating they attended the program and understand all protection measures, the sign-in sheet shall be submitted to CDFW with the Project Completion Report, and a copy shall be kept on the project site. A handout that summarizes the education program including images of special-status species shall also be distributed to all personnel working on the project. These forms shall be filed at the worksite offices and be available to CDFW upon request.
- 2.8. <u>Biological Monitoring</u>. A Qualified Biologist shall be onsite for the entirety of the project.
- 2.9. Environmentally Sensitive Areas Designation and Demarcation. Prior to the commencement of project activities, the Qualified Biologist(s) shall designate and demarcate all Environmentally Sensitive Areas (ESAs) within the project area that may not be disturbed by project-related activities or personnel. ESAs are defined as any area in which special status plant or wildlife, or sensitive natural communities occur. This includes, but is not limited to, wetlands, seasonal marsh, riparian areas active bird nests, etc. ESAs are to be protected in place and remain undisturbed during construction. ESAs shall be clearly demarcated and shall be installed under the supervision of the Qualified Biologist. ESA demarcation shall use the most applicable method for the resources to be avoided, such as silt fencing, flagging, or stakes with markers. No personnel and/or equipment are permitted to enter the designated-ESA areas. All ESA exclusion fencing, flagging, and/or staked boundaries shall be monitored and maintained daily throughout the course of the project by the Qualified Biologist.
- 2.10. Exclusionary Fencing System. An exclusionary fencing system shall be installed surrounding the western edge of the access road and in all other applicable sensitive areas as determined by the Qualified Biologist in other areas of the project site. The exclusionary fencing plan shall be submitted to CDFW for review and written acceptance at least **60 days** prior to the commencement of project activities. Once approved, this plan shall be attached as Exhibit F to this Agreement and fully incorporated herein by reference. The following criteria must be met:
 - The fencing shall be standard silt fencing at least 42 inches in height as measured above the soil surface or be of an appropriate height for exclusion of wildlife that could

- inhabit the project area. If the Permittee wishes to use an alternative system, a request must be made to CDFW and can only be employed with CDFW's written approval.
- Fencing shall be trenched six inches into the soil. The soil will then be compacted
 against both sides of the fence to prevent wildlife from gaining access underneath.
 The stakes will be placed on the upland side of the fence. No gaps or holes are
 permitted in the fencing system, except for pedestrian and vehicle entry points.
- The entry/exit points may be constructed in the fencing system for equipment and personnel, but the Qualified Biologist must ensure no wildlife is capable of entering the fenced off site via the gate. The gate structure must be flush to the ground with no holes or gaps (i.e., plywood gates with silt fencing flaps).
- Prior to the initiation of project activities, the fence shall be inspected daily by the Qualified Biologist for holes, gaps, or access points, which shall be repaired upon discovery. Prior to the initiation of project activities for the day, the area inside the fence shall also be inspected daily for trapped wildlife. If wildlife is discovered, the gates shall be opened and monitored until the wildlife has left the fenced area of its own volition, no work shall occur during this period. If the wildlife does not leave on its own, CDFW will be contacted before work may continue.
- If fencing becomes damaged, it will be immediately repaired upon detection and the Qualified Biologist shall stop work in the vicinity of the fencing, as needed, to ensure that no wildlife has entered the construction area.
- 2.11. <u>Daily Clearance Surveys</u>. Each day, prior to initiation of project activities, the Qualified Biologist shall thoroughly inspect the project work areas, staging/stockpiling area, and under and around all equipment and vehicles for any wildlife. If the Qualified Biologist determines that wildlife or sensitive species are not present within the work area, work may commence. If wildlife species are present, the wildlife shall be given a buffer and allowed to move out of the work area on their own volition. If the species does not move out of the area, relocations may occur only as specified in this Agreement.
- 2.12. General Cease Operations Authority. The Qualified Biologist shall have independent authority to stop any or all project activities if any special-status species enters the project area, if project activities pose imminent threat to fish and wildlife resources, or if project activities are out of compliance with the measures outlined in this Agreement. If a special-status species is observed within the project site, then all work shall halt and not continue until the wildlife leaves the area of its own volition or is relocated according to the terms of this Agreement.
- 2.13. <u>Violation Reporting</u>. If the Qualified Biologist witnesses a violation of this Agreement, they shall contact CDFW immediately. Permittee shall not enter into non-disclosure agreements with biological personnel or otherwise implement penalties or disincentives restricting direct communication with CDFW. Failure to consult immediately with CDFW on violations shall constitute grounds for CDFW to revoke the biological personnel's monitoring authority and require Permittee to stop work until other biological personnel have been approved.

Special-status Species Protections

2.14. <u>Salt Marsh Harvest Mouse (SMHM)</u>. Measures pertaining to SMHM described below shall be followed to avoid impacts to the species.

- 2.14.1. <u>Potential Habitat</u>. Under this Agreement, potential habitat for SMHM shall include any salt marsh area, including bulrush and cattails, and non-tidal pickleweed habitat, diked seasonal wetlands with or without pickleweed, and adjacent areas where SMHM could disperse to if disturbed.
- 2.14.2. Qualified SMHM Biologist. A Qualified SMHM Biologist approved by CDFW, and the United States Fish and Wildlife Service (USFWS) shall be present on site at all times that work activities are being conducted in potential SMHM habitat, including refugia habitat. Minimum qualifications for a Qualified SMHM Biologist are a four-year college degree in wildlife biology or related field and have a minimum of 2 years of professional experience in conducting surveys and/or monitoring for SMHM. A Qualified SMHM Biologist shall document compliance with all SMHM related avoidance and minimization measures and shall stop project activities if any of the measures are not being adhered to.
- 2.14.3. Observation. If any SMHM individuals or nests are observed in any project area, all project activities shall cease within a 50-foot radius of the detection. The individual(s) shall be allowed to leave the area under its own volition before work is resumed.
- 2.14.4. Preconstruction Surveys. A Qualified SMHM Biologist shall identify and mark potential SMHM habitat, as listed above, at each site prior to the planned start of project activities. Prior to the initiation of work each day in potential SMHM habitat for all vegetation management work, ground or vegetation disturbance, operation of large equipment, grading, and prior to expanding the work area, a Qualified SMHM Biologist shall conduct a preconstruction survey of all potential SMHM habitat that may be directly or indirectly impacted by the day's activities. Rakes or similar hand-tools may be used to part vegetation and allow for more thorough inspection of dense vegetation.
- 2.14.5. <u>Avoidance</u>. Ground disturbance of potential SMHM habitat shall be avoided to the maximum extent feasible. All construction equipment and materials shall be staged on existing roadways or staging and areas away from potential SMHM habitats when not in use.
- 2.14.6. <u>Vegetation Removal</u>. Where potential SMHM habitat cannot be avoided, such as for excavation, access routes, or anywhere else that vegetation could be trampled or crushed by work activities, vegetation shall be removed to ground level from the ground disturbance work area. Any vegetation removal necessary in, or within 50 feet of, potential SMHM habitat shall be implemented according to the following protocol:
 - Vegetation removal shall be conducted under the immediate supervision of a Qualified SMHM Biologist.
 - No more than 3 workers shall conduct vegetation removal while being monitored by a single Qualified SMHM Biologist. Additional workers shall be allowed to perform vegetation removal as long as they are accompanied by additional Qualified SMHM Biologists.
 - Workers clearing vegetation shall not be greater than 50 feet from a Qualified SMHM Biologist.

- Vegetation removal shall begin furthest from the largest contiguous potential SMHM habitat and proceed towards it.
- Vegetation shall initially be disturbed, allowing SMHM to passively move from the area of disturbance toward the area of largest contiguous potential SMHM habitat. Vegetation shall then be removed with non-mechanized hand-tools (e.g., grass whips, loppers, rakes, trowels, hoes, and/or shovels, etc.) to a height sufficient for a Qualified SMHM Biologist to examine the remaining vegetation and determine that no SMHM or their nests are present. Once a Qualified SMHM Biologist has determined that the remaining vegetation is clear of SMHM and their nests, mechanized hand-tools (e.g., walk-behind mowers, string trimmers, weedwhackers, etc.) may be utilized to remove the remaining vegetation to ground level. Vegetation removal in potential SMHM habitat shall only be conducted with a Qualified SMHM Biologist walking in front of the vegetation removal crew to confirm that SMHM are not in the vegetation removal path.
- Removed vegetation shall not be stockpiled within the work areas, exclusion zones, and/or near roads or staging areas due to risk of reoccupation of SMHM.
- 2.14.7. <u>Temporary SMHM Exclusion Fencing</u>. Immediately prior to equipment entry into each work area, the Qualified SMHM Biologist shall inspect the work and access areas to ensure that no SMHM are present. The Qualified SMHM Biologist shall walk in front of the equipment accessing the work site to ensure that no SMHM are impacted by equipment. Following vegetation removal, temporary exclusion fencing shall be installed at the discretion of the Qualified SMHM Biologist. Pickleweed shall be avoided to the extent practical. The SMHM exclusion fencing shall be made of a material that does not allow SMHM to climb or pass through. The SMHM exclusion fencing shall be a minimum above-ground height of at least 30 inches and at least 12 inches higher than any adjacent vegetation, and the bottom shall be buried to a depth of at least 4 inches so SMHM cannot crawl under the fence. Any supports for the SMHM exclusion fencing (e.g., t-posts) shall be placed on the inside of the project area. The final 5 feet of the SMHM exclusion fencing shall be angled to direct wildlife away from the road. A Qualified SMHM Biologist shall be on site during SMHM exclusion fencing installation and shall check the fencing alignment and installation to ensure no SMHM are present. The SMHM exclusion fencing shall be inspected daily and repaired immediately. Once the project work has been completed, the Qualified SMHM Biologist shall inspect the access areas to ensure that no SMHM are present and shall walk in front of the equipment leaving the work site to ensure that no SMHM are impacted by equipment.
- 2.15. Giant Gartersnake Observation and Avoidance (GGS). If a snake species of any kind is observed within the project site, then all project activities shall halt, and work shall not continue until the snake species can be identified by a Qualified Biologist. If GGS is discovered at any time within the project site and staging areas, then all project activities shall halt until CDFW has been notified and Permittee can demonstrate compliance with CESA to CDFW's satisfaction. If take of GGS is expected to occur as a result of project-related activities, then an Incidental Take Permit may be obtained from CDFW to avoid disruptions to project activities.

- 2.16. <u>Rail Avoidance and Minimization</u>. Measures pertaining to California black rail, California clapper rail, and California Ridgway's rail described below shall be followed to avoid impacts to these species (hereafter referred to collectively as "rails").
 - 2.16.1. <u>Potential Rail Habitat</u>. Under this Agreement, potential rail habitat shall include any salt marshes, or anywhere rails have been, or could be, observed.
 - 2.16.2. Qualified Rail Biologist. A Qualified Rail Biologist approved by CDFW and USFWS shall be present on site at all times that project activities are being conducted in potential rail habitat. Minimum qualifications for a Qualified Rail Biologist are a four-year college degree in wildlife biology or related field and have a minimum of 2 years of professional experience in conducting surveys and/or monitoring for rails. The Qualified Rail Biologist shall have knowledge of rail biology and vocalizations, and familiarity with all species of rail included in this Agreement and their nests. The Qualified Rail Biologist shall document compliance with all rail-related avoidance measures and shall stop project activities if any of the measures are not being adhered to.
 - 2.16.3. Pre-construction Surveys. The Qualified Rail Biologist shall identify and mark suitable rail habitat within **14 days** prior to the planned start of project activities. Within **48 hours** of the commencement of project activities and immediately prior to the initiation of work each day, the Qualified Rail Biologist shall conduct focused, pre-construction surveys for rails in all areas containing or within 50 feet of potential rail habitat that may be directly or indirectly impacted by project activities.
 - 2.16.4. Observation. If any rail individuals or nests are observed in any project area, all project activities shall cease within a 600-foot radius of the detection. The individual(s) shall be allowed to leave the area before work is resumed. If the individual(s) does not move on its own volition or a nest is observed, a Qualified Rail Biologist shall contact USFWS and CDFW for further guidance on how to proceed.
 - 2.16.5. Nonbreeding Season. During the non-breeding season (September 1 to January 31), construction activities requiring entry by workers into potential rail habitat shall be conducted with a Qualified Rail Biologist present. If rails are observed within or near the work area during the non-breeding season, a minimum 300-foot no-disturbance buffer from the observation location shall be established until a Qualified Rail Biologist confirms that the rails have left the area.
 - 2.16.6. <u>Breeding Season</u>. Every attempt shall be made to avoid construction activities within or immediately adjacent to potential rail habitat during the breeding season (February 1 to August 31). In addition:
 - If construction activities within or immediately adjacent to potential rail habitat cannot be avoided during the breeding season, surveys shall be conducted to determine rail nesting locations, or rails shall be assumed to be nesting in all potential rail habitat. Survey methods for rails shall follow the USFWS Site-Specific Protocol for Monitoring Marsh Birds, available at:
 https://ecos.fws.gov/ServCat/DownloadFile/110223, which has been specially

- approved by CDFW. Survey results shall be provided to CDFW prior to initiation of project activities.
- If no breeding rails are detected during protocol surveys, then project activities may proceed within or adjacent to potential rail habitat. A Qualified Rail Biologist shall be present for the duration of activities.
- If protocol surveys determine that rails are present in or immediately adjacent
 to the project areas, project activities may proceed beyond a 600-foot radius
 from each estimated detection location. Every attempt shall be made to not
 conduct work within each 600-foot radius from each estimated detection
 location. A Qualified Rail Biologist shall be stationed within 50 feet of the 600foot no disturbance buffer for the duration of project activities.
- If rails are assumed to be present or protocol surveys determine that breeding rails are present, limited construction activities may be conducted during the breeding season, if necessary, between 300 and 600 feet of a detection location, with non-motorized hand tools only and implementation of the following:
- i. Activities may only occur if there is a substantial non-habitat barrier (e.g., open water of a major slough channel, berms, roads) in between a project area and the detection location, or if a commercially available portable acoustic barrier panel is placed close to the noise source and between the work area and the detection location.
- ii. A Qualified Rail biologist shall be present for the duration of activities.
- iii. Activities shall be limited to signage installation where power tools are not required; removal of vegetation with non-mechanized hand tools such has grass whips, loppers, rakes, etc.; native plant harvesting and replanting; fencing installation; and earth moving with shovels, picks, or other hand tools.
- iv. Qualified Rial Biologists shall have maps or GPS locations of the confirmed rail detection locations and shall proceed cautiously and minimize time spent in areas near where rails were detected.
- During the rail breeding season, project activities are prohibited within 300 feet of a rail detection location.
- If an alarmed rail or rail nest is detected, project activities shall cease, and
 workers shall leave the immediate area carefully and quickly. An alternate
 route shall be selected that avoids this area by at least 300 feet for 40 days,
 and the location of the sighting shall be recorded to inform future activities in
 the area.
- 2.17. <u>Burrowing Owl (BUOW)</u>. Measures pertaining to BUOW described below shall be followed to avoid impacts to the species.
 - 2.17.1. The BUOW breeding season is typically February 15 to September 15 near the project area. If project activities occur within the breeding season, BUOW preconstruction surveys shall be conducted according to the methodology described in the March 7, 2012 CDFW Staff Report on Burrowing Owl Mitigation at https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=83843&inline=true. Per the 2012 Staff Report, a minimum of four survey visits shall be conducted during

the BUOW breeding season. A minimum of three preconstruction surveys, at least three weeks apart, shall be conducted during the peak nesting period between April 15 and July 15, with at least one visit after June 15. Preconstruction surveys shall be conducted no more than 14 days prior to the start of construction work with a final preconstruction survey conducted within 24 hours prior to ground disturbance. If work is conducted in the non-breeding season (September 16 to February 14), conduct four survey visits spread evenly apart throughout the non-breeding season.

- 2.17.2. If BUOW surveys locate occupied burrows, avoidance and minimization measures must be developed and approved by CDFW prior to the start of construction according to the 2012 Staff Report on Burrowing Owl Mitigation.
- 2.17.3. If burrows become occupied during project activities, BUOW activity is discovered within 100 feet of the project activities, or passive relocation is necessary, work must halt immediately and may not continue until CDFW has been consulted and approves an avoidance, minimization, mitigation, monitoring, and reporting plan.
- 2.18. Western Pond Turtle (WPT). The Qualified Biologist shall conduct a reconnaissance-level survey for WPT individuals and potential nesting habitat prior to April 1 (onset of WPT nesting season) and 48 hours prior to the commencement of project activities. Potential nesting habitat is defined in this Agreement as upland loose soils, sands, sediment bars, grassy areas, or duff within 1,500 feet of a waterway where breeding or hibernation may occur, within the current or historic range of WPT. Surveys from previous years may be used as a guide but shall not be relied upon to determine whether habitat is present. If WPT or potential habitat (including breeding and hibernation habitat) are discovered onsite, the following conditions shall apply:
 - 2.18.1. A Qualified Biologist shall be present each day to conduct pre-construction surveys prior to initiation of project activity for all ground-disturbing activities or activities in areas of potential nesting for WPT and to ensure avoidance of disturbance to WPT nesting habitat.
 - 2.18.2. If WPT enters the project site all work shall cease immediately, and the individual(s) shall be allowed to leave the area on its own volition. If the individual(s) does not leave on its own volition, the Qualified Biologist may move said individual(s) to safe areas of potential habitat immediately downstream of the project. All relocation events must be reported to CDFW within 24 hours and be included in the Weekly Monitoring Report, pursuant to Measure 4.5.
 - 2.18.3. All WPT handled by the Qualified Biologist shall be inspected for signs of fungal and/or bacterial shell disease. WPT shall not be moved out of their watershed of origin. If the Qualified Biologist determines or suspects WPT individuals are exhibiting signs of fungal and/or bacterial shell disease, said individuals shall not be moved, but instead quarantined and immediately reported to CDFW for further guidance.
 - 2.18.4. No disking, ground disturbance, or chemical application shall occur in upland or riparian areas where potential habitat exists.

- 2.18.5. If potential nesting habitat will be impacted, the Qualified Biologist shall install exclusion fencing effective to prevent WPT from entering potential nesting habitat prior to the onset of WPT nesting season (April 1). The exclusion fencing shall be maintained daily for the duration of the project to keep WPT from entering and nesting in areas slated for disturbance. If Permittee cannot exclude potential nesting habitat prior to April 1, the Qualified Biologist shall oversee the hand excavation of potential nesting sites. If eggs, individuals, or hatchlings are discovered, the disturbed area will be returned to its previous state and all project activities shall cease. Permittee shall immediately contact CDFW by email seeking guidance and timelines for the recommencement of project activities.
- 2.19. Nesting Bird Surveys and Avoidance. Permittee is responsible for ensuring that the project does not result in any violation of the Migratory Bird Treaty Act or relevant Fish and Game Codes. If project activities will occur during nesting bird season (February 15 to September 15) the Qualified Biologist shall conduct a focused survey for active nests within five days prior to the initiation of project-related activities. Surveys shall be conducted in all potential habitat located at, and adjacent to, project work sites and in staging and storage areas. This includes ground surveys for applicable species, such as Saltmarsh common yellowthroat. The minimum survey radii surrounding the work area shall be the following: (1) 250 feet for non-raptors, and (2) 1,000 feet for raptors. Survey methodology shall be submitted to CDFW for approval at least 14 days prior to the initiation of surveys. Survey results shall be submitted to CDFW prior to the commencement of project activities. If a lapse in project-related activities of seven days or longer occurs, another focused survey will be required before project activities can be reinitiated. If an active nest is found, Permittee shall consult with CDFW regarding appropriate action to comply with the Fish and Game Code of California. CDFW reserves the right to provide additional provisions to this Agreement designed to protect nesting birds.
 - 2.19.1. Active Nests. The Qualified Biologist shall observe any identified active nests prior to the start of any construction-related activities to establish a behavioral baseline of the adults and any nestlings. Once work commences, all active nests shall be continuously monitored by the Qualified Biologist to detect any signs of disturbance and behavioral changes as a result of project activities. In addition to direct impacts, such as nest destruction (including seasonally used nests of migratory raptors), nesting birds might be affected by noise, vibration, odors and movement of workers or equipment. If signs of disturbance and behavioral changes are observed, the biological personnel responsible shall cease work causing that change and shall contact for guidance.
 - 2.19.2. Active Nest Buffers. Active nest sites and protective buffer zones shall be designated as ESAs, where no project-related activities or personnel may enter. These designated areas shall be protected during project activities with the establishment of a fence barrier or flagging surrounding the nest site. The Qualified Biologist shall determine the necessary buffer, in consultation with CDFW, to protect nesting birds based on existing site conditions, such as construction activity and line of sight, and shall increase buffers if needed to provide sufficient protection of nesting birds and their natural behaviors. Buffers shall be approved in writing by CDFW prior to the continuation of project activities.

- 2.20. Special-status Plants. For all project activities with anticipated temporary or permanent impacts to vegetation, biological staff with experience with the local flora shall conduct surveys for any special-status plants with the potential to occur provided for in this Agreement (e.g., Delta tule pea, Suisun marsh aster, etc.), or any other species listed by the California Native Plant Society (CNPS), or found on the CNPS East Bay Chapter's Database of Rare, Unusual, and Significant Plants, within the appropriate identification periods, prior to commencement of project activities in accordance with CDFW's Protocols for Surveying and Evaluating Impacts to Special-Status Native Plant Populations and Natural Communities, dated March 20, 2018, and available at: Survey and Monitoring Protocols and Guidelines (CDFW.ca). If a special-status plant (or population of special-status plants) is discovered onsite, Permittee shall notify CDFW within 24 hours. No activities with the potential to impact special-status plants shall occur until CDFW is notified and provides written concurrence for those activities to begin.
- 2.21. Special-status Species Sightings or Injuries. If Permittee encounters any species listed as Rare, Threatened, or Endangered pursuant to the CESA during the implementation of project activities, all work shall be immediately suspended and CDFW notified. Work may not reinitiate until Permittee has consulted with CDFW and can demonstrate compliance with CESA. The Qualified Biologist shall have the authority and responsibility to communicate directly to CDFW, without having to report first to the Permittee. If special-status species are injured or otherwise harmed during project activities, CDFW reserves the right to require a separate notification be submitted by Permittee in the event special-status species are discovered. This separate notification may require environmental documentation be developed and circulated for compliance under CEQA.

General Wildlife Protection and Avoidance Measures

- 2.22. <u>Harassment of Animals</u>. No project personnel or motorized equipment shall harass, herd, or drive at any wildlife. Project personnel and equipment shall not cause displacement of wildlife into roadways or open areas lacking cover from predators.
- 2.23. Allow Wildlife to Leave Unharmed. Permittee shall allow any wildlife encountered during the course of project activities to leave the project area unharmed and of their own accord. The only exception is for wildlife relocations that are specifically described in this Agreement. If any listed wildlife is encountered, the Permittee shall contact CDFW immediately for further direction.
- 2.24. <u>Staging and Storage Areas</u>. Staging and storage areas for equipment, and all project items shall be located outside of the creek channel and banks, in a dry upland location. Staging areas shall be within a paved or gravel-lined site. Permittee shall install erosion and sediment controls to prevent any sediment or pollutants from exiting the staging area. Vegetation disturbance shall be limited to the immediate staging footprint and limited to as few access pathways as necessary to complete the project. Equipment and materials shall not be stored within 50 feet of the creek unless it is on paved areas or within the established staging area. Temporary containment berms shall be constructed around all equipment and materials while stationary.
- 2.25. <u>Access to Project Site</u>. Access to the in-channel locations for project activities shall be restricted to the existing maintenance access adjacent to the western channel bank.

- Equipment for in-channel operations shall operate from above the top of bank and will not enter West Antioch Creek unless otherwise approved in writing by CDFW.
- 2.26. Open Pipes Restriction. All pipes, culverts, hoses, posts, or similarly hollow structures that are staged or stored at the site for one or more overnight periods (either vertically or horizontally) shall be either: capped, screen, or filled with material by the Permittee when structures arrive at the project site or thoroughly inspect for wildlife by the Qualified Biologist prior to use in project activities. All hollow structures installed as part of the project and exposed to the environment shall be capped, screened, or filled with material by Permittee prior to the end of the workday in which the installation occurs.
- 2.27. Open Trenches, Pits, and Holes. Any open trenches, pits, or holes ("open cavities") with a depth of larger than six inches shall be covered at the conclusion of work each day with a hard, non-heat conductive material (e.g., plywood). No netting, canvas, or material capable of trapping or ensnaring wildlife shall be used to cover open cavities. If use of a hard cover is not feasible, multiple wildlife escape ramps shall be installed, constructed of wood planking, or installed as an earthen-fill slope with walls no greater than 30 degrees in slope, in each open cavity that is capable of allowing large (e.g., deer) and small (e.g., frogs and snakes) wildlife to escape on their own accord. Prior to the initiation of construction each day and prior to covering at the conclusion of work each day, the Qualified Biologist shall inspect the open cavities for wildlife. If wildlife is discovered, it shall be allowed to leave on its own accord. If wildlife does not leave of its own accord, consultation with CDFW is required before work can be initiated.
- 2.28. <u>Fence and Pole Restrictions</u>. Any fencing, signposts, or vertical poles installed temporarily or permanently throughout the course of the project shall have the top capped and/or the top three post holes covered or filled with screws or bolts to prevent the entrapment of wildlife. All fencing shall not be constructed of materials deleterious to wildlife (e.g., sharp edges exposed at the top or bottom of chain-link fencing, braided wire where birds may become entangled, etc.). No barbed wire, or equivalent, shall be allowed where it may result in harm to birds and other wildlife.
- 2.29. <u>Removal of Temporary Flagging, Fencing, and Barriers</u>. Permittee shall remove all temporary flagging, fencing, and/or barriers from the project site upon completion of project activities.
- 2.30. Vegetation Removal and Modification. Vegetation disturbance shall be limited to the immediate work footprint and shall not exceed the minimum amount necessary to conduct project activities. All vegetation slated for modification within the project site shall be surveyed and be deemed clear of wildlife immediately prior to modification activities by the Qualified Biologist. No tree removal or trimming is authorized by this Agreement. If tree removal or trimming is required, CDFW must be consulted, and an Amendment may be required.
- 2.31. <u>Invasive Plant Species</u>. Permittee shall not plant, seed or otherwise introduce invasive plant species within the project area. Invasive plant species include those identified in the California Invasive Plant Council's inventory database, which is accessible at: <u>About the Cal-IPC Inventory California Invasive Plant Council</u>.
- 2.32. <u>No Stockpiling of Vegetation</u>. Vegetation removed under project activities and not slated for slash, mulching, or salvage revegetation purposes shall be placed directly into a

disposal vehicle and removed from the project site. Vegetation not intended for these purposes shall not be piled directly on the ground unless it is later transferred, piece by piece, under the direct supervision of a Qualified Biologist. Vegetation removed that is intended for onsite reuse purposes yet require interim stockpiling (i.e., not immediately transferred, mulched, etc. upon generation) shall be placed within a biological exclusion area and be later transferred to a proper disposal site under the supervision of a Qualified Biologist.

- 2.33. Removal of Trash and Construction Waste. Permittee shall remove all construction raw materials and wastes from the project site following the completion of project activities. Food-contaminated wastes generated during construction shall be removed daily to avoid attracting predators to work sites. Permittee or its contractors shall not cause any construction debris or litter to be placed within the creek or riparian zone. All trash and debris generated as a result of project activities shall be removed and lawfully disposed of at a licensed facility.
- 2.34. Report Injury and Mortalities to CDFW Immediately. If any species are found dead or injured during potential relocation activities or other construction-related actions, the Qualified Biologist shall provide written notification within 24 hours to CDFW by emailing the CDFW staff person listed in the Contact Information Section of this Agreement. CDFW will review the activities resulting in take and determine if additional protective and/or compensatory measures are required.

Vehicles and Equipment

- 2.35. Vehicles and Equipment Prohibited from Operating in Creek. The Permittee shall not operate equipment in wetted areas (including but not limited to ponded, flowing, or wetland areas) without the prior written approval of CDFW. Equipment for in-channel operations shall operate from above the top of bank and will not enter the creek unless otherwise approved in writing by CDFW.
- 2.36. Vehicle Chaperoning. A Qualified Biologist shall walk in front of any vehicles, scanning for wildlife, such as WPT, as they move across the project area including the access route and staging areas. The Qualified Biologist shall halt vehicle traffic if wildlife is observed and could be threatened by vehicle traffic until the species in question has moved, or been moved, in accordance with the Agreement.
- 2.37. Vehicle/Equipment Maintenance and Storage. Permittee shall inspect equipment/vehicles for leaks prior to using on the project site and shall be inspected regularly throughout the project duration. Any equipment or vehicles driven and/or operated in proximity of the creek shall be checked daily and maintained in good working order to prevent the release of contaminants that if introduced to water could be deleterious to aquatic life, wildlife, or aquatic habitat. When not in use, equipment and vehicles shall be stored, refueled, and otherwise maintained in the construction staging areas, with the secondary containment system in place. If a piece of equipment and vehicle is found to be leaking fluids of any kind, it shall be removed from the project area immediately and not returned until appropriate repairs have been made.
- 2.38. <u>Stationary Equipment</u>. Permittee shall ensure that stationary equipment such as motors, pumps, and generators located within or adjacent to the creek are positioned over drip pans. Stationary heavy equipment shall have suitable containment to handle a

- catastrophic spill or leak. Vehicles or equipment parked for extended periods at the site shall also be positioned over drip pans, which shall be checked regularly.
- 2.39. Spill Containment and Spill Kits. Spill containment kits will be kept on site and be always available for use during construction operations and/or staging or fueling of equipment. All activities performed in or near State waters shall have absorbent materials designated for hazardous materials spill containment and cleanup activities on-site for use in an accidental spill. Permittee shall immediately initiate the cleanup activities in the event of a hazardous materials spill. Prior to entering the work site, all field personnel shall know the location of spill kits and trained in their appropriate use.
- 2.40. <u>Decontamination of Equipment</u>. Any equipment that will contact the water during project activities shall be decontaminated prior to arriving on the project site, after the project is finished, and any time project equipment leaves and returns to the site to prevent the spread of aquatic diseases and invasive aquatic species to other waterways. Workers shall also decontaminate waders, boots, and other clothing that will come in direct contact with the water prior to arriving on the project site, after the project is finished, and any time work apparel is used off-site and is to be used on the project site again. Decontamination of clothing and equipment shall be done using the most appropriate method(s) from the October 3, 2022 California Department of Fish and Wildlife Aquatic Invasive Species Decontamination Protocol found at:
 https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=43333&inline.
- 2.41. <u>Control Spread of New Zealand Mudsnail</u>. Due to the presence of the invasive New Zealand mud snail (*Potamopyrgus antipodarum*) within West Antioch Creek, the following precautions shall be implemented to control the introduction or spread of the species:
 - All project personnel shall be trained in the identification, preventative measures, and
 physical and chemical cleaning methodologies for New Zealand mud snails prior to
 working on the project. Brochures or identification cards shall be available to all
 project personnel and CDFW's informational posters shall be installed at the project
 site. Information can be found at: California's Invaders: New Zealand Mudsnail.
 - After work in West Antioch Creek, all waders, boots, gear, and other equipment shall be thoroughly inspected for New Zealand mudsnails by the personnel using said items. A cleaning station should be established on the project site and maintained throughout the project duration employing both physical and chemical cleaning methodologies. The cleaning station shall implement the preventative and treatment methodologies in accordance with the 2022 California Department of Fish and Wildlife Aquatic Invasive Species Decontamination Protocol discussed above.
 - A designated cleaning area shall be established for heavy equipment and vehicles. All heavy equipment shall be cleaned prior to leaving the site in accordance with CDFW guidelines.

Toxic and Hazardous Materials

2.42. Spill of Material Deleterious to Fish, Wildlife, and Plants. Permittee and all contractors shall be subject to the water pollution regulations found in Fish and Game Code Sections 5650 and 12015. In the event of a hazardous materials spill into the creek (e.g., equipment

fluids, turbid waters, etc.), Permittee shall immediately notify the California Office of Emergency Services State Warning Center by calling 1-800-852-7550 and immediately provide written notification to the CDFW staff person listed in the Contact Information Section of this Agreement.

Permittee shall take all reasonable measures to document the extent of the impacts and affected areas including photographic documentation of affected areas, injured fish and wildlife, or where the affected area could impact protected plants. Permittee shall meet with CDFW within **10 days** of the reported spill in order to develop a resolution including: site cleanup, site restoration, and compensatory mitigation for the harm caused to fish, wildlife, and the habitats on which they depend as a result of the spill. Permittee shall be responsible for all spill cleanup, site restoration, and compensatory mitigation costs. Spill of materials to waters of the State that are deleterious to fish and wildlife are in violation of Fish and Game Code Section 5650 et seq. and are subject to civil penalties for each person responsible. CDFW reserves the right to refer the matter to the District Attorney's Office if a resolution cannot be agreed upon and achieved within a specified timeframe, generally six months from the date of the incident.

- 2.43. Spill Prevention and Emergency Spill Response Plan. The Permittee shall prepare and submit a Spill Prevention and Emergency Response Plan to CDFW prior to the start of project work. This plan shall be limited to three pages in length and may be presented in prose, table, or bulleted list format. This plan shall identify what procedures the Permittee shall employ to handle and store potential hazardous materials. This plan shall also identify the actions which would be taken in the event of a spill of cementitious products, petroleum products, sediment, or other material harmful to fish, wildlife, plant resources, or the habitats thereof. This plan shall also identify the emergency response materials which shall be kept at the site to allow the rapid containment and cleanup of any spilled material. Permittee may substitute a Stormwater Pollution Prevention Plan (SWPPP) in place of the emergency spill response plan. The emergency spill response plan or the SWPPP shall be attached as Exhibit G to this Agreement and fully incorporated herein by reference.
- 2.44. Spill Containment and Spill Kits. All activities performed in or near State waters shall have absorbent materials designated for hazardous materials spill containment and cleanup activities onsite for use in an accidental spill. As necessary, containment berms shall be constructed to prevent spilled materials from reaching the creek channel. Prior to entering any project area, all field personnel shall know the location of spill kits and trained in their appropriate use. Permittee shall immediately initiate the cleanup activities in the event of a hazardous materials spill.
- 2.45. Storage and Handling of Hazardous Materials. Any hazardous or toxic materials that could be deleterious to fish, wildlife, plant resources, or the habitats thereof shall be contained in watertight containers or removed from the project site. Such materials include, but are not limited to, debris soil, silt, bark, rubbish, chemically treated lumber products, cementitious products, or washings thereof, paint or other coating material, and oil or other petroleum products. These materials shall be prevented from contaminating the soil and/or entering the creek. Any such materials, placed within or where they may enter the creek, by Permittee or any party working under contract, or with permission of Permittee, shall be removed immediately.

Erosion and Sediment Control

- 2.46. Erosion Control Plan. Permittee shall submit a comprehensive Erosion Control Plan to CDFW for review and approval no more than **60 days** prior to initiation of any project-related activities. Once approved, this plan shall be attached as Exhibit H to this Agreement and fully incorporated herein by reference. The Erosion Control Plan shall be prepared in accordance with requirements set forth in this Agreement, and shall include, at minimum, the following: (1) description of materials, methods and timing being proposed; (2) map of project site(s) clearly depicting areas on which erosion control will be installed; (3) if hydroseeding is proposed, a list of species which will be used.
- 2.47. Erosion Control Implementation. All exposed soils within the work area shall be stabilized with erosion control devices immediately following the completion of earthmoving activities, during project activities, or prior to rain events to prevent erosion into the creek. Erosion control measures, such as silt fences, fiber rolls, straw wattles, gravel- or rock-lined ditches, water check bars, and broadcasted straw, or other appropriate materials, shall be used. Erosion control measures shall be monitored during and after each storm event for effectiveness. Modifications, repairs, and improvements to erosion control measures shall be made as needed to protect water quality. At no time shall sediment-laden runoff be allowed to enter the channel or directed to where it may enter the channel.
- 2.48. <u>Erosion Control Material Limitation</u>. To minimize the risk of ensnaring snakes and other wildlife, Permittee shall not use erosion control materials containing synthetic (e.g., plastic or nylon) monofilament netting or cross joints in the netting that are bound/stitched. Geotextiles, fiber rolls, and other erosion control measures shall be made of loose-weave mesh, such as coconut (coir) fiber, or other products without welded or tight weaves.
- 2.49. <u>Geo-textile Fabric</u>. Permittee shall not use geo-textile fabrics of any variety for permanent use in the project. Temporary use of geo-textile fabrics for the purposes of exclusion or silt fencing is permissible under the condition they are to be removed immediately after their need.
- 2.50. Location of Spoil Sites and Stockpiles. Permittee shall ensure that spoils piles and stockpiles shall be placed a minimum of 25 linear feet away from creeks, ponds, drainages, or swales, and placed away from concentrated ground squirrel burrows or sensitive plant species stands within the project site. Spoils and stockpiles shall be placed on already disturbed or ruderal habitats wherever feasible. Sediment spoil piles shall be stored on plastic sheets in the designated staging area and a secondary containment system installed.
- 2.51. <u>Cover Spoil Piles</u>. Permittee shall have readily available natural fiber filter fabric or burlap to cover exposed spoil piles and exposed areas of bare dirt in order to prevent loose soil from moving or blowing into sensitive habitats. These materials shall be applied when it is evident rainy or windy conditions threaten to erode loose soils into sensitive habitats.
- 2.52. No New Project Phase without Erosion Control. Installation of erosion control devices shall be performed under the direction of a qualified or certified erosion control specialist. No phase of the project may be started if that phase and its associated erosion control measures cannot be completed prior to the onset of a rain event if that construction phase may cause the introduction of sediments into a creek. Erosion control measures shall be inspected frequently to minimize failure and conduct any necessary repairs. All non-

- structural related and non- biodegradable erosion control measures shall be removed from the project site upon cessation of construction activities.
- 2.53. <u>Storm Event Inspection</u>. After any storm event, Permittee shall inspect all sites scheduled to begin or continue construction within the next **72 hours**. Corrective action for erosion and sedimentation shall be taken as needed, including but not limited to repairs to erosion control or exclusion fencing.

Water Diversion and Dewatering

- 2.54. <u>Dewatering and Diversion Plan</u>. Permittee shall follow the Dewatering and Diversion Plan (Exhibit I) submitted to CDFW with the project Notification. If any changes to the Dewatering and Diversion Plan are required, Permittee shall submit a written request to the CDFW staff person listed in the Contact Information Section of this Agreement. CDFW will review the request and may require additional measures to protect fish and wildlife resources as a condition of granting the modification. Any such additional measures shall then be made part of the conditions of this Agreement. The Permittee shall only proceed if CDFW provides written approval of the new Dewatering and Diversion Plan.
- 2.55. Groundwater and Nuisance Seepage. Nuisance flows and seepage around or found throughout the project site and project activities shall be isolated from surface flows in the creek channel and the work area shall be periodically pumped dry of seepage as needed to achieve this. Groundwater or subsurface flow encountering during excavation shall be pumped to natural or excavated settling basin on stable soil outside the channel. The settling basin shall not be allowed to drain to or be pumped to the creek until the stored water is less turbid than the creek flow into which it is released and of sufficient quality to maintain downstream aquatic life.
- 2.56. Capture and Relocation of Aquatic Wildlife. As needed throughout project activities, the Qualified Biologist shall capture and relocate applicable wildlife (i.e., species that are not rare, threatened, or endangered under CESA) out of harm's way to the nearest area of appropriate habitat outside of the project area. Measures shall be taken to avoid harm and mortality resulting from relocation activities. Specific adherences for relocating aquatic (fish, aquatic reptiles, amphibians) wildlife are as follows:
 - 2.56.1. Methods for Capture and Relocation of Aquatic Wildlife. Qualified Biologist shall capture and relocate applicable wildlife. Capture methods may include fish landing nets, dip nets, buckets and by hand. Captured wildlife shall be released immediately in the closest downstream body of water or potential habitat adjacent to the project location.
 - 2.56.2. Relocated Aquatic Wildlife Records. A record shall be maintained of all relocated wildlife. The record shall include the date of capture and relocation, the method of capture, the location of the relocation site in relation to the project site, and the number and species captured and relocated. The record shall be provided to CDFW with the Project Completion Report.
 - 2.56.3. Release Locations Criteria. Prior to capturing aquatic wildlife, the most appropriate release location(s) shall be determined, using the following criteria: (1) water temperature shall be similar as the capture location; (2) there shall be ample habitat for the captured species; (3) relocation areas must be in proximity to the

capture site, contain potential habitat, and not be affected by project activities; (4) and be free of exotic predatory species (i.e., bullfrogs, crayfish, etc.) to the best of the Qualified Biologist's knowledge. In the rare case that amphibian egg masses are found after July 1, the Qualified Biologist shall make every attempt to wait until the egg masses hatch to transport them. There shall be a low likelihood for aquatic wildlife to reenter the project site or become impinged on exclusion fencing, nets, or screens.

- 2.56.4. Wet Hands and Nets. Handling of aquatic wildlife within the project site shall be minimized. However, when handling is necessary, the Qualified Biologist shall always wet hands or nets prior to touching species for relocation.
- 2.56.5. Proper Holding Technique. Holding containers shall be sized such that adult fish will fit without touching the sides. The Qualified Biologist shall temporarily hold aquatic wildlife in cool, shaded, aerated water in a flow-through live car. The Qualified Biologist shall protect such wildlife from jostling and noise and shall not remove such aquatic wildlife from this container until time of release.
- 2.56.6. Water Temperatures and Water Changes. The Qualified Biologist shall measure air and water temperatures periodically. A thermometer shall be placed in holding containers and, if necessary, periodically conduct partial water changes to maintain a stable water temperature. If water temperature reaches or exceeds 18 degrees Celsius, captured aquatic wildlife shall be released immediately, and all wildlife relocation operations ceased unless otherwise authorized in writing by CDFW.
- 2.56.7. No Overcrowding. Overcrowding in containers shall be avoided by having at least two containers and segregating young-of-year fish, amphibians, and reptiles from larger age-classes to avoid predation. Larger amphibians shall be placed in the container with larger fish. If fish are abundant, the capturing of fish and amphibians shall cease periodically, and they shall be released at the predetermined locations. Reptiles shall not share containers with fish and amphibians.
- 2.57. <u>Daily Cofferdam Checks for Stranded Aquatic Wildlife</u>. The Qualified Biologist shall check daily for stranded wildlife as the water level within the dewatering area drops. Applicable stranded native wildlife shall be relocated according to the terms of this Agreement.
- 2.58. <u>Cofferdam Requirements</u>. Prior to the start of construction, Permittee shall divert the creek around or through the work area and the work area shall be isolated from the flowing creek. Cofferdams shall comply with the following requirements:
 - Be watertight and constructed of a non-erodible material and shall not contain soil, fine sediment, or any other highly erodible material. Cofferdams shall be constructed using clean gravel bags and may be sealed with polyethylene material.
 - Cofferdams shall be installed during periods of low flow to reduce the potential for the presence of aquatic species within the work area.
 - Cofferdams shall be installed upstream and downstream of the work site and divertall flow from upstream of the upstream dam to downstream of the downstream dam, through a suitably sized pipe.

- Cofferdams shall remain in place and functional for the duration of in-channel activities. If the cofferdams or creek diversions fail, they shall be repaired immediately.
- The minimum footprint feasible for the cofferdam placement shall be utilized to lessen the impact to flow within the channel.
- All cofferdam materials and water diversion items shall be removed from the creek and natural flows restored upon completion of the activities requiring dewatering, which shall be no later than October 15.
- 2.59. Water Diversion. Permittee shall divert flow in a manner that prevents turbidity, siltation, or pollution and provides flows to downstream reaches. Diversion shall be conducted such that water at the downstream end does not scour the channel bed or banks. Unless otherwise specified by CDFW, the entire natural flow shall be allowed to bypass the project site and discharge to downstream reaches. Flows shall be sufficient quality and quantity to support fish and other aquatic life in good condition both above and below the diversion. If possible, gravity flow is the preferred method of water diversion. If a pump is used, it shall be operated at the rate of flow that passed through the site naturally; pumping rates shall not dewater nor impound water on the upstream side of the cofferdam. Pumps shall be placed in flat areas, away from the creek channel. Pumps shall be secured by tying off to a tree or staked in place to prevent movement by vibration. The natural flow shall be restored to the affected creek immediately upon completion of work at that location.
- 2.60. <u>Intake Screens</u>. The suction end of water intakes shall be fitted with fish screens meeting CDFW criteria to prevent entrainment or impingement of fish, reptiles, or amphibians that escaped removal. CDFW fish screen criteria can be found in the *California Salmonid Stream Restoration Manual's Appendix S* available online at: <u>Guidance Tools (CDFW.ca)</u>. Pump intakes shall be checked by the Qualified Biologist at least twice daily while the cofferdam is in place, for impingement of fish, reptiles, or amphibians.

Rock Slope Protection (RSP) Specifications

- 2.61. RSP Acceptable Practices. RSP shall consist of clean rock, competent for the application, sufficiently sized, and properly installed to remain in place and withstand highest velocity of water anticipated within the creek channel. Slopes with RSP shall be supported with competent boulders keyed into a footing trench with a depth sufficient to properly seat the footing comprised of coarse boulders and prevent instability. Permittee shall ensure the RSP is placed in a smooth curve along the natural bank alignment, shall not project out into the channel beyond the limits of the natural bank, and shall not include any "barbs" or "groins", or other features which will deflect flow against the opposite bank, or cause the formation of downstream eddies. Any other bank stabilization method is subject to CDFW review and written acceptance.
- 2.62. <u>Fill Materials</u>. No fill material, other than clean rock, shall be placed in the channel. Rock, gravel, soil, vegetation, and/or other native stream materials shall not be imported to, taken from, or moved within the bed or banks of any waterway, except as otherwise authorized under this Agreement.

- 2.63. <u>Fill Voids of RSP.</u> Permittee shall ensure that all voids and spaces within the riprap are filled with smaller rock, gravels, and native soil material, and revegetated with local plant species per the Measures of this Agreement.
- 2.64. No Grouting of RSP. Permittee shall not apply grout, cement, or mortar to RSP.
- 2.65. <u>Geo-Textile Fabric Restriction.</u> Permittee shall not use geo-textile fabrics of any variety for permanent use in the project. Temporary use of geo-textile fabrics for the purposes of exclusion or silt fencing is permissible under the condition they are to be removed immediately after their need.
- 2.66. Long Term Bank Stability. Permittee shall ensure that bank stabilization is maintained according to the final design plans. Permittee shall be responsible for all repairs if the rock type, shape, and/or size result in latent erosion, unintended scour, bank failure, and/or other degradation of the channel that may contribute to downstream sedimentation or overall habitat degradation. If degradation occurs post-implementation such that a section of bank is not stabilized as designed, Permittee shall contact CDFW to discuss remediation measures. A new Notification, and additional compensatory mitigation, may be required for work necessary to remediate damage resulting from any such degradation or failure.

3. Compensatory Measures

To compensate for adverse impacts to fish and wildlife resources identified above that cannot be avoided or minimized, Permittee shall implement each measure listed below.

3.1. Riparian Mitigation. Permittee shall be responsible for a minimum 0.86-acre uplift of riparian and stream resources onsite. This shall be to compensate for the 0.78 acres of temporary impacts and 0.005 acre of permanent to riparian habitat communities. Permittee shall submit a final Mitigation and Monitoring Plan (MMP) for CDFW review and approval at least 30 days prior to the commencement of project activities for the 0.86-acre onsite enhancement and restoration area. The MMP shall include discussion of the Permittee plan to achieve the site remediation requirements and success criteria discussed in Measure 3.2. Once approved, the MMP shall be attached as Exhibit J herein to this Agreement and fully incorporated herein by reference

If the mitigation amount cannot be satisfied through onsite actions, the Permittee shall purchase riparian or stream habitat, or ecologically equivalent credits from a CDFW-approved mitigation or conservation bank for the remaining acreage of mitigation required. Permittee shall obtain written approval of the bank and credits from CDFW prior to purchase. Permittee shall complete the purchase and submit the payment receipt to CDFW prior to the commencement or project activities.

3.2. <u>Site Remediation</u>. Areas that have become either barren of vegetation, slated for erosion control, or where ground disturbance has occurred, shall be revegetated with local native plant species consistent with the native vegetative composition immediately up and downstream of the project site. If project areas are slated for seeding or hydroseeding, the native seed mix shall include an equal parts mixture, or other ratio with CDFW approval, of at least: one perennial grass, one annual grass, one perennial forb, and one annual forb. Revegetation efforts shall occur prior to the onset of winter rains within the year initial impacts take place. Salvaged vegetation may be utilized by the Permittee yet shall adhere

to all Measures applicable in this Agreement. To ensure revegetation efforts succeed, onsite plantings and seeded areas shall meet the following success criteria:

- 3.2.1. Baseline conditions, including absolute percentages of ground cover, shall be quantified by the Qualified Biologist prior to the commencement of project activities. The baseline narrative and representative photographs shall be submitted with the biological surveys for each project site.
- 3.2.2. Removal and prevention of re-establishment of the currently existing stands of *A. donax spp.* and *R. armeniacus* along both banks of West Antioch Creek within the project boundary and replacement with appropriate native vegetation. Following removal, the areas shall be monitored and adaptively managed, as needed, for five years to ensure eradication of the stands. To be considered successful, these stands must be completely removed and show no re-growth for two years.
- 3.2.3. Vegetation cover shall consist of no new invasive plant species rated as "high" or "moderate" by the Cal-IPC at the end of five years. Reinvasion of extant invasive species found on-site shall not exceed greater than 20-percent of baseline conditions of the total revegetated area at the end of five years.
- 3.2.4. Remediated areas shall be monitored for a minimum of five years after revegetation efforts are initially applied. Monitoring shall occur, at the minimum, in April and August of the year following initial impacts. If the goals of this agreement are not met in the annual monitoring results, then Permittee shall be responsible for replacement plantings or seeding, additional watering, weeding, invasive plant eradication, regrading, and additional years of monitoring until these goals have been met or otherwise approved in writing by CDFW.

4. Reporting Measures

Permittee shall meet each reporting requirement described below.

- 4.1. <u>Pre- and Post-construction Notification</u>. Permittee shall notify CDFW **14 calendar days** prior to the initiation of project activities, and within **14 calendar days** of the completion of project activities. Permittee shall submit the notification to the CDFW staff person listed in the Contact Information Section of this Agreement, referencing Notification Number EPIMS-CCA-32699-R3.
- 4.2. <u>Pre-construction Report</u>. At least **14 days** prior to the initiation of project activities, the Permittee shall upload to the EPIMS portal a pre-construction report detailing the current site conditions, all the required pre-construction survey efforts that have or will be undertaken, the vegetation baseline narrative, a description of all species-protective activities conducted pursuant to this Agreement's avoidance and minimization measures, and the representative pre-construction photographs (See Measure 4.4, below)
- 4.3. <u>Biological Surveys.</u> Permittee shall complete all surveys and associated requirements within the listed timeframes set forth in this Agreement. Within **48 hours** after completing each survey required under this Agreement, the Qualified Biologist shall submit a comprehensive report detailing the biological personnel performing the survey;

- survey timing, methods, and results; and a description of all activities conducted pursuant to the avoidance and minimization measures contained within this Agreement.
- 4.4. Photographic Documentation of Work. Prior to the commencement of work, Permittee shall flag a minimum of 15 vantage points every 200 feet along the creek for the project that offer all representative views of the project sites to be taken from each bank, in addition to a minimum of 4 vantage points of other relevant work areas (e.g., staging locations; spoils area; and any other work areas). Permittee shall photograph the project areas from each of the flagged points, noting the direction and magnification of each photo. Pre-construction photographs shall be digitally sent to CDFW as part of the Pre-construction Notification and Biological Surveys as stated in this Agreement. Upon completion of work, Permittee shall photograph post-project conditions from the flagged photo points use the same direction and magnification as the pre-project photos. Side by side pre- and post-project photographs shall be digitally sent to CDFW within five days of completion of the project via email or digital media. A reference key shall be submitted with the photos describing the location of the photo, the direction of the view, and whether the photo is pre- or post-construction. All photos shall be submitted in the Project Completion Report.
- 4.5. Weekly Monitoring and Compliance Reports. The Qualified Biologist shall submit a report every week to CDFW that includes the following items: (1) notification number, (2) a summarized description of whether compliance for all avoidance and minimization measures has been met, (3) recommendations to achieve compliance of any avoidance and minimization measures that have not been met, (4) fish and wildlife (and their CESA designation) observed during monitoring, (5) a description of any instances of capture and relocation of wildlife, (6) any observed mortalities of wildlife including species, location and suspected cause of death; and (7) if work was not done, or was stopped for a period of time, provide the dates of inactivity. Permittee shall upload each weekly report to the EPIMS data portal referencing Notification Number EPIMS-CCA-32699-R3.
- 4.6. Project Completion Report. A Project Completion Report shall be uploaded to the EPIMS data portal within 30 days of completion of all project-related activity. This report shall include, at minimum, the following: (1) dates that construction activities occurred; (2) pertinent information concerning the success of the project in meeting avoidance and minimization measures; (3) compensatory and conservation measures fulfilled; (4) summaries of relocations, mortalities and special status species documented at the project site; (5) copies of any CNDDB submissions made during the course of project related activities; (6) photographs of post-construction results; and (7) the as-built designs of the completed work. An explanation of failure to meet such measures as specified in this Agreement shall also be included, if applicable. Permittee shall upload the Project Completion Report to the EPIMS data portal, referencing Notification Number EPIMS-CCA-32699-R3.
- 4.7. <u>CNDDB Observations</u>. The Qualified Biologist shall submit all observations of Covered Species to CDFW's California Natural Diversity Database (CNDDB) at https://www.wildlife.ca.gov/Data/CNDDB/Submitting-Data within **14 calendar days** of the observation and the Qualified Biologist shall include copies of the submitted forms with the Project Completion Report.

- 4.8. Post Construction Walkthrough. Permittee shall contact CDFW to participate in a post construction walkthrough of the project area within **30 days** of project completion to ensure that: (1) the project has been constructed as designed; (2) erosion control measures and revegetation efforts have been appropriately implemented. Permittee shall act immediately upon CDFW staff request to address concerns discovered during the walkthrough, in a timeframe identified by CDFW in its sole discretion.
- 4.9. <u>Annual Monitoring Reports.</u> Permittee, in consultation with the Qualified Biologist, shall compile and submit to CDFW monitoring reports summarizing the results of all compensatory restoration and revegetation activities outlined in in this Agreement annually for five years following completion of the project. Each report shall be submitted to CDFW no later than September 1 of the year after project activities are terminated. Each report shall detail, at minimum: (1) survey methodology focusing on revegetation success criteria; (2) relative plant cover of the area, contrasting between each year when applicable; (3) latent erosion or scour to the area; (4) implemented or planned maintenance activities; (5) adaptive management techniques to be employed for any failures to meet the requirements in Section 3; and (6) calculation of success towards meeting 0.86 acre mitigation requirement.

CONTACT INFORMATION

Any communication that Permittee or CDFW submits to the other shall be submitted through Environmental Permit Information Management System (EPIMS) as instructed by CDFW.

To Permittee:

Cornelius Johnson
City Manager
City of Antioch
200 H Street
Antioch, CA 94509-1005
cjohnson@antiochca.gov

To CDFW:

California Department of Fish and Wildlife
Bay Delta Region
2825 Cordelia Road, Suite 100, Fairfield, CA 94534
Attn: Lake and Streambed Alteration Program – Sabrina Dunn
Notification #EPIMS-CCA-32699-R3
Sabrina.Dunn@wildlife.ca.gov and/or R3LSA@wildlife.ca.gov

LIABILITY

Permittee shall be solely liable for any violations of the Agreement, whether committed by Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents or contractors and subcontractors, to complete the project or any activity related to it that the Agreement authorizes.

EPIMS-CCA-32699-R3 Streambed Alteration Agreement Page 29 of 31

This Agreement does not constitute CDFW's endorsement of, or require Permittee to proceed with the project. The decision to proceed with the project is Permittee's alone.

SUSPENSION AND REVOCATION

CDFW may suspend or revoke in its entirety the Agreement if it determines that Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, is not in compliance with the Agreement.

Before CDFW suspends or revokes the Agreement, it shall provide Permittee written notice by certified or registered mail that it intends to suspend or revoke. The notice shall state the reason(s) for the proposed suspension or revocation, provide Permittee an opportunity to correct any deficiency before CDFW suspends or revokes the Agreement, and include instructions to Permittee, if necessary, including but not limited to a directive to immediately cease the specific activity or activities that caused CDFW to issue the notice.

ENFORCEMENT

Nothing in the Agreement precludes CDFW from pursuing an enforcement action against Permittee instead of, or in addition to, suspending or revoking the Agreement.

Nothing in the Agreement limits or otherwise affects CDFW's enforcement authority or that of its enforcement personnel.

OTHER LEGAL OBLIGATIONS

This Agreement does not relieve Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, from complying with, or obtaining any other permits or authorizations that might be required under, other federal, state, or local laws or regulations before beginning the project or an activity related to it. For example, if the project causes take of a species listed as threatened or endangered under the Endangered Species Act (ESA), such take will be unlawful under the ESA absent a permit or other form of authorization from the U.S. Fish and Wildlife Service or National Marine Fisheries Service.

This Agreement does not relieve Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, from complying with other applicable statutes in the Fish and Game Code including, but not limited to, Fish and Game Code sections 2050 *et seq*. (threatened and endangered species), section 3503 (bird nests and eggs), section 3503.5 (birds of prey), section 5650 (water pollution), section 5652 (refuse disposal into water), section 5901 (fish passage), section 5937 (sufficient water for fish), and section 5948 (obstruction of stream).

Nothing in the Agreement authorizes Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, to trespass.

AMENDMENT

CDFW may amend the Agreement at any time during its term if CDFW determines the amendment is necessary to protect an existing fish or wildlife resource.

EPIMS-CCA-32699-R3 Streambed Alteration Agreement Page 30 of 31

Permittee may amend the Agreement at any time during its term, provided the amendment is mutually agreed to in writing by CDFW and Permittee. To request an amendment, Permittee shall use the "Amendments & Extension" form in EPIMS to submit the request. Permittee shall include with the completed form, payment of the corresponding amendment fee identified in CDFW's current fee schedule (see Cal. Code Regs., tit. 14, § 699.5).

TRANSFER AND ASSIGNMENT

This Agreement may not be transferred or assigned to another entity, and any purported transfer or assignment of the Agreement to another entity shall not be valid or effective, unless the transfer or assignment is requested by Permittee in writing, as specified below, and thereafter CDFW approves the transfer or assignment in writing.

The transfer or assignment of the Agreement to another entity shall constitute a minor amendment, and therefore to request a transfer or assignment, Permittee shall use the "Amendments & Extension" form in EPIMS to submit the request. Permittee shall include with the completed form, payment of the minor amendment fee identified in CDFW's current fee schedule (see Cal. Code Regs., tit. 14, § 699.5).

EXTENSIONS

In accordance with Fish and Game Code section 1605, subdivision (b), Permittee may request one extension of the Agreement, provided the request is made prior to the expiration of the Agreement's term. To request an extension, Permittee shall use the "Amendments & Extension" form in EPIMS to submit the request. Permittee shall include with the completed form, payment of the extension fee identified in CDFW's current fee schedule (see Cal. Code Regs., tit. 14, § 699.5). CDFW shall process the extension request in accordance with Fish and Game Code section 1605, subdivisions (b) through (e).

If Permittee fails to submit a request to extend the Agreement prior to its expiration, Permittee must submit a new notification and notification fee before beginning or continuing the project the Agreement covers (Fish & G. Code § 1605, subd. (f)).

EFFECTIVE DATE

The Agreement becomes effective on the date of CDFW's signature, which shall be: (1) after Permittee's signature; (2) after CDFW complies with all applicable requirements under the California Environmental Quality Act (CEQA); and (3) after payment of the applicable Fish and Game Code section 711.4 filing fee listed at https://www.wildlife.ca.gov/Conservation/CEQA/Fees.

TERM

This Agreement shall expire on **December 31, 2027**, unless it is terminated or extended before then. All provisions in the Agreement shall remain in force throughout its term. Permittee shall remain responsible for implementing any provisions specified herein to protect fish and wildlife resources after the Agreement expires or is terminated, as Fish and Game Code section 1605, subdivision (a)(2) requires.

EXHIBITS

EPIMS-CCA-32699-R3 Streambed Alteration Agreement Page 31 of 31

The documents listed below are included as exhibits to the Agreement and incorporated herein by reference.

- A. Exhibit A Project Location Map
- B. Exhibit B [Reserved for future exhibit: Final 100% Design Plans (City of Antioch, TBD)]
- C. Exhibit C Project Impacts (City of Antioch, 2022)
- D. Exhibit D– [Reserved for future exhibit: Sediment Management Plan (City of Antioch, TBD)]
- E. Exhibit E– Biologist Resume Form
- F. Exhibit F [Reserved for future exhibit: Exclusionary Fence Plan (City of Antioch, TBD)]
- G. Exhibit G [Reserved for future exhibit: Spill Prevention and Emergency Response Plan (City of Antioch, TBD)]
- H. Exhibit H– [Reserved for future exhibit: Erosion Control Plan (City of Antioch, TBD)]
- I. Exhibit I– Dewatering and Diversion Plan (Woodard and Curran, 2022)
- J. Exhibit J– [Reserved for future exhibit: Final Mitigation and Monitoring Plan (City of Antioch, TBD)]

AUTHORITY

If the person signing the Agreement (signatory) is doing so as a representative of Permittee, the signatory hereby acknowledges that he or she is doing so on Permittee's behalf and represents and warrants that he or she has the authority to legally bind Permittee to the provisions herein.

AUTHORIZATION

This Agreement authorizes only the project described herein. If Permittee begins or completes a project different from the project the Agreement authorizes, Permittee may be subject to civil or criminal prosecution for failing to notify CDFW in accordance with Fish and Game Code section 1602.

CONCURRENCE

Through the electronic signature by the permittee or permittee's representative as evidenced by the attached concurrence from CDFW's EPIMS, the permittee accepts and agrees to comply with all provisions contained herein.

The EPIMS concurrence page containing electronic signatures must be attached to this agreement to be valid.

ATTACHMENT 2: SECTION 01035 - OWNER PROVIDED INFORMATION

SECTION 01035 – OWNER PROVIDED INFORMATION

PART 1 GENERAL

- 1.1 SUMMARY
 - A. This Section is for the purpose of including information in the Contract Documents provided by the Owner.
 - B. The information provided in the section was not developed by the Engineer or the Owner. It is only provided by the Owner for reference by the Contractor.
- PART 2 PRODUCTS NOT USED
- PART 3 EXECUTION NOT USED

END OF SECTION

Submittal

DMZ Builders West Antioch Creek Channel Contract No. P.W.201-6

Submittal Number: 7
Revision Number: 0

Date: 2/19/2018

To:

Attn: Scott Buenting

City of Antioch 200 "H" Street Antioch, CA 94509 From:

Tyler Hoffman

DMZ Builders

4070 Nelson Ave Ste. A Concord, CA 94520

Subject:Flow Diversion and Exclusion Fencing Submittal

We hereby submit the following for your approval.

ITEM NO. Re	ev.	DRAW/SPEC. NO.	DESCRIPTION
	0	02140	Flow Diversion and Exclusion Fencing Submittal
			Pamarke:

Please respond by: 03/19/2018

Tyler Hoffman DMZ Builders Scott Buenting City of Antioch

West Antioch Creek Channel Improvements

Project Number: P.W. 201-6

West Antioch Creek Channel Flow Diversion and Exclusion Fencing Submittal

Contract Specification 02140 Submitted: February 19th, 2018

DMZ Builders 4070 Nelson Ave, Suite A Concord, CA 94520

Contents

Permit Information:	2
Project Description and Scope as Defined by Permit	2
Project Schedule and Restrictions as Defined by Permit	3
Exclusion Fencing	3
Flow Diversion	4
Appendix A: Flow Diversion Schematic	6

1

Permit Information:

Streambed Alteration Agreement
Notification No. 1600-2014-0350-R3
West Antioch Creek Channel Improvements Project

Project Description and Scope as Defined by Permit

The Project is limited to the improvement of West Antioch Creek flood control channel to increase flood control capacity in the upper reach of the channel designated Reach A. In Reach A, an existing concrete lined culvert will be replaced with a larger culvert and an existing concrete lined channel that is partially underground will be converted to a dirt lined channel. The dirt lined channel will also be day lighted along a section of the channel parallel to O Street. The Project is limited to the following:

- 1.) Culvert Replacement & Improvement. The Project is limited to the replacement of an existing culvert that has insufficient capacity. The existing culvert runs underneath West 10th Street and will be replaced with a four-barrel, pre-cast, concrete box culvert. Each barrel will be approximately 14 feet long by 7 feet high; the entire length of the 4-barrel structure is approximately 100 feet from upstream end to downstream end. Culvert inlet apron structures will be constructed at the upstream and downstream ends of West 10th Street. The upstream culvert inlet will be 15,6 feet deep, 100 feet long and will be installed even with the line of flow of West Antioch. Sloped wingwalls will be installed on the upstream end that vary from approximately 15 feet in height to 2 feet in height. The downstream wingwalls are also sloped and vary from approximately 21.6 feet in height to 2 feet. The pre-cast structures will then be backfilled with 200 cubic yards of native soil on the west side and 1,500 cubic yards of native soil on the east side. An approximate 40-foot-long by 10-foot-deep rock slope protection (RSP) apron will be installed just in front of the downstream culvert inlet. An approximate 40-foot-long by 30-foot-deep RSP apron that varies in depth from the 30 feet to 2 feet will be installed on the upstream end. The entire new structure will be shifted 40 feet to the west to align with the newly created channel. A sheet pile wall will be required during construction to prevent scour upstream of the southern. A cofferdam will be installed and will consist of a sump and bypass pump that will transport water from the upstream end to the downstream end at West 8th Street. Once the new structure is installed the new bypass pipe will be inserted through a culvert barrel. Approximately 1,200 cubic yards of sediment will be excavated to accommodate construction of the Project.
- 2.) Concrete Channel Conversion and Improvement. The Project is limited to the demolition of an approximately 400 linear foot existing concrete lined channel that will be converted to a 640 linear feet earthen bottom channel. The channel will be widened between 82-84 feet at the base and approximately 104 feet at the top of the channel bank invert. In addition, a portion of a previously existing timber ditch cover, concrete channel, paved parking area, breezeway, and service bay at a building located at 1400 West 10th Street will be demolished and removed to allow for an increased channel length and daylighting of a portion of the previously covered channel. Approximately 5,000 cubic yards of sediment will be removed from the existing channel reach to accommodate the new

channel. The new channel will be shifted 40 feet west from its current location to accommodate the new configuration and newly installed culvert structure, as well as the existing culvert and concrete channel on the east side will be backfilled using approximately 1,500 cubic yards of native fill. The west side of the channel adjacent to the new culvert will be backfilled with approximately 200 cubic yards of native soil.

Project Schedule and Restrictions as Defined by Permit

To minimize adverse impacts to fish and wildlife and their habitats, work within streams will be limited from April 15 to October 31. Re-vegetation work above the mean high-water level may be done at any time, provided that appropriate erosion control BMPs are implemented. The work period may be extended on a week/day to week/day basis with CDFW approval. No Project activity will be initiated until thirty (30) minutes after sunrise and all Project activity will cease thirty (30) minutes prior to sunset. All lighting shall be turned off thirty (30) minutes prior to sunset, unless required for safety or security purposes. All Project lighting left on after sunset will focus only on areas of impact to avoid light pollution to natural and sensitive areas outside the Project limits and avoid disruption to nocturnal wildlife behavior. Work will be restricted to periods with minimal or no precipitation to minimize bank disturbance and erosion. No phase of the Project shall be initiated if the 72-hour forecast from the National Weather Service (http://www.nws.noaa.gov) predicts a 30% or greater chance of rain. If an unanticipated storm event occurs during construction, the Permittee shall inspect all sites currently under construction and scheduled to begin work within 72 hours for indications of bank erosion and/or channel sedimentation; if noticeable erosion or sedimentation has occurred, the Permittee shall implement additional erosion control features and consult with CDFW regarding corrective actions. If a precipitation event exceeding 1/4-inch of rain over a 24-hour period occurs, Permittee shall wait a minimum of 24 hours before resuming construction. Prior to any work notifications shall be given to the City to coordinate required oversight and personnel. All works shall have attended a pre-construction training session prior to working within the Project site.

Exclusion Fencing

Prior to any dewatering work an exclusionary fencing system shall be installed surrounding the reaches of the upper segment of reach A, reference Submittal 006 Stormwater Pollution Prevention Plan for specific locations. The location will be laid out in the field and agreed upon by the City's Qualified Biologist. The fencing to be installed will be standard silt fencing at least forty-two (42) inches in height that will be trenched six (6) inches into the soil. The soil will then be compacted against both sides of the fence to prevent wildlife from gaining access underneath. The stakes will be placed on the upland side of the fence. No gaps or holes are permitted in the fencing system, except for pedestrian and vehicle entry points. In the event the existing channel is concrete or grouted RSP, the silt fencing will be set flush with the bottom grade and secured in place by placing sand bags over top. Any vegetation outside the direct area of fencing within a five (5) foot perimeter must be cleared to a height of four (4) inches or less and maintained throughout the project at this height, using hand tool vegetation removal

and clearing methods. A qualified biologist must be present during all vegetation removal and installation activities. The silt fences and other in-stream containment structures shall be adequately secured/braced to contain anticipated sediment and debris load. Fencing system shall be inspected periodically in accordance with the SWPPP.

Flow Diversion

West Antioch Creek's flows are from largely urban drainage area, which is ephemeral in nature, thus only flows at a high rate during wet weather periods. Dry weather season low level nuisance flows can occur due to excessive irrigation or upstream water use activities.

The existing channel is currently holding approx. 2-3 ft. of stagnant water. The Contractor's approach to implement the flow diversion system will be installed in several phases. Reference Appendix A for Flow Diversion Schematic.

Initial Draw Down

Initially a berm constructed of sand bags and lined with visqueen will be installed on the downstream limits of the channel beyond the Project grading limits. The lined berm shall be constructed to a height 1' taller than the localized existing channel bank to achieve adequate freeboard. Once the berm is established an intake diversion pump will installed upstream of the dam to pump the water to the downstream side of the berm. The Contractor anticipates utilizing a Honda WT30 3-inch Trash Pump or similar for this operation. This pump has the ability to throttle discharge output up or down in the event needed. The discharge end of piping will be secured and positioned in a manner to mitigate scouring of the existing channel. The City will provide qualified biologists and fish rescue personnel as required throughout the operations. Progression of water level decline will be monitored throughout; the goal is to draw the water level within the Project limits down where the upstream berm can efficiently be constructed while minimizing impact to water quality and habitat. The natural gradient of the channel being relatively flat essentially holds the water and does not "flow" as a typical creek would.

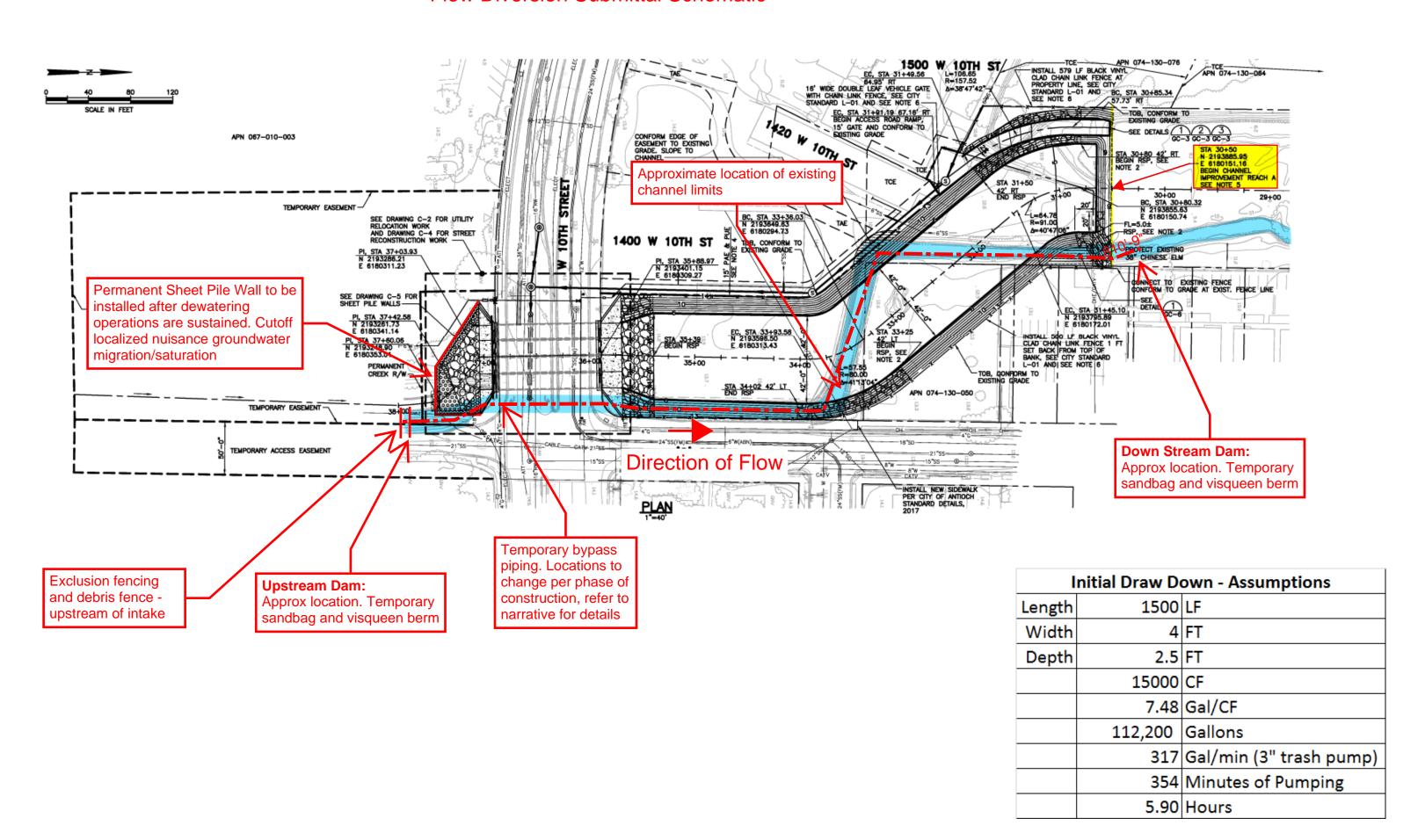
Establish Upstream Dam and Bypass Piping

The upstream dam will be installed in the same fashion as the downstream, utilizing sandbags and visqueen. The permanent sheet piles will be installed after the system is established. The height of the dam will be of sufficient free board to handle anticipated flows. A long run(s) of 6" up to 12" HDPE bypass piping will be assembled and strung through the existing culverts and along the existing concrete channel to the same point of discharge utilized for draw down activities. There will be a header installed at the upstream dam to allow pump(s) to be operated simultaneously, however the Contractor will implement a siphon utilizing gravity flow to minimize the need for power consumption. The bypass piping will be of sufficient length to allow its location to be manipulated as construction progresses. Once the upstream dam and bypass piping are established, the downstream dam could effectively be removed if unless it is actively holding back downstream water from coming back up the creek and entering the work area. The Contractor will have backup pumps and/or more gravity flow diversion piping materials readily available in the event the system is not keeping up with demands. The

Antioch PW 201-6 West Antioch Creek Channel Improvements West Antioch Creek Channel Flow Diversion and Exclusion Fence February 19, 2018

Contractor will regularly inspect the system to assure functionality and compliance are being maintained.

Removal of Dams and Bypass Piping


Upon completion of the creek restoration scope the bypass piping and dams shall be removed and the new creek rewatered. Initially the downstream dam will be removed. Diversion piping flows will be shut off to allow the creek to equalize and the piping removed. The upstream dam and pumps will be removed along with exclusion fencing.

General Notes: Monitoring and sampling shall be performed in accordance with Submittal 006 Stormwater Pollution Prevention Plan. All water diversion intake hoses and pump inlets shall be screened to prevent entrapment or intake of aquatic species and the screen face shall be oriented parallel to the flow of water. The screens shall be made of non-corrosive material and diameter/diagonal openings shall meet the criteria of CDFW and the National Marine Fisheries Service. The screen shall be kept in good repair and cleaned/checked as frequently as possible. All screens shall be supported above the channel bottom. If sediment-laden water from dewatering is encountered it shall be held in a settling container or discharged in upland locations where it will not drain directly into surface water bodies.

Appendix A: Flow Diversion Schematic

Flow Diversion Submittal Schematic

ATTACHMENT 3: Soil Analysis Results

ACCREDITED

CERTIFICATE #'s 5890.01 & 5890.02

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

Laboratory Report

for

City of Antioch
Post Office Box 5007
Antioch, CA 94531-5007
Attention: Laura A. Villasana

Fax: 925-779-0272

Date of Issue
06/21/2022

Ujanba Hemu

EUROFINS EATON ANALYTICAL, LLC

ADG: Alejandra D Gomez

Project Manager

Report: 1002300 Project: SPECIAL Group: Soil 2022

- * Accredited in accordance with TNI 2016 and ISO/IEC 17025:2017.
- * Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis.
- * As applicable, this report consists of the cover page, State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms.
- * Test results relate only to the sample(s) tested.
- * Test results apply to the sample(s) as received, unless otherwise noted in the comments report (ISO/IEC 17025:2017).
- * This report shall not be reproduced except in full, without the written approval of the laboratory.
- * This report includes ISO/IEC 17025 and non-ISO 17025 accredited methods.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Montana	Cert 0035
Arizona	AZ0778	Nebraska	NE-OS-21-13
Arkansas	CA00006	Nevada	CA00006
California	2813	New Hampshire *	2959
Colorado	CA00006	New Jersey *	CA 008
Connecticut	PH-0107	New Mexico	CA00006
Delaware	CA 006	New York *	11320
Florida *	E871024	North Carolina	06701
Georgia	947	North Dakota	R-009
Guam	21-008R	Ohio - 537.1	87786
Hawaii	CA00006	Oregon *	4034
Idaho	CA00006	Pennsylvania *	68-00565
Illinois	200033	Puerto Rico	CA00006
Indiana	C-CA-01	Rhode Island	LAO00326
Iowa – Asbestos	413	South Carolina	87016
Kansas *	E-10268	South Dakota	CA11320
Kentucky	90107	Tennessee	TN02839
Louisiana *	LA008	Texas *	T104704230-20-18
Maine	CA00006	Utah (Primary AB) *	CA00006
Maryland	224	Vermont	VT0114
Marianas Islands	MP0004	Virginia *	460260
Massachusetts	M-CA006	Washington	C838
Michigan	9906	EPA Region 5	CA00006
Mississippi	CA00006	Los Angeles County Sanitation Districts	10264

^{*} NELAP/TNI Recognized Accreditation Bodies

ISO/IEC 17025:2917 Accredited Method List

The test listed below are accredited and met the requirements of ISO/IEC 17025 as verify by A2LA. Refer to our certificates and scope of accreditations (no. 5890-1 and 5890-2) found at:

https://www.eurofinsus.com/Eaton

Test(s)	Method(s)	Potable	Waste
	` '	Water *	Water
Enterococci Escherichia coli	Enterolert SM 9221 B.1	Х	Х
(Enumeration)	SM 9221 F	X	
Fecal Coliform (P/A and	SM 9221 C (MTF/EC), SM 9221	Х	Х
Enumeration)	E (MTF/EC)	^	^
Fecal Streptococci and Enterococci	SM 9230 B	x	х
Heterotrophic Bacteria	SM 9215 B	Х	
Legionella	Legiolert®	Х	
Pseudomonas aeruginosa	Idexx	x	
Total Coliform (P/A and	Pseudalert SM 9221A, SM		
Enumeration)	9221B, SM 9221 C	X	Х
Total Coliform, Total			
Coliform with Chlorine Present	SM 9221 B	Х	Х
Total Coliform/E. coli (P/A and			
Enumeration, Idexx Colilert, Idexx Colilert 18, Colisure)	SM 9223	х	
Total Microcystins and	EDA 546		
Nodularins	EPA 546	Х	
Yeast and Mold	SM 9610	X	
1,2,3-Trichloropropane	CA SRL 524M-	Х	
(TCP) at 5 PPT 1,4-Dioxane	TCP EPA 522		
,	Modified EPA	Х	
2,3,7,8-TCDD	1613 B	X	
Acrylamide	⁺ LCMS 2440)	Х	
Algal Toxins/Microcystin Alkalinity	+ LCMS 3570	X	
Alkalinity	SM 2320B EPA 350.1.	X	Х
Ammonia	SM 4500-NH3		Х
	Н		
Asbestos Bicarbonate Alkalinity as	EPA 100.2 SM 2330 B	Х	Х
HCO3	3W 2330 B	x	Х
BOD/CBOD	SM 5210 B		Х
Bromate	+LCMS- 2447	Х	
Carbonate as CO3 Carbonyls	SM 2330 B EPA 556	X X	X
	EPA 410.4,	^	
Chemical Oxygen Demand	SM 5220D		Х
Chlorinated Acids	EPA 515.4	Х	
	Palin Test Chlordio X Plus,		
Chlorine Dioxide	SM 4500-CLO2	X	
	D		
Chlorine, Free, Combined, Total Residual,	SM 4500-CI G	X	
Chloramines		^	
Color	SM2120B	Х	
Conductivity	EPA 120.1,	x	х
Corrosivity (Langelier	SM 2510B		
Index), Carbonate as CO3,	SM 2330 B	v	
Hydroxide as OH	3W 2330 B	X	
Calculated	SM 4500-CN		
Cyanide (Amenable)	G SW 4500-CN	Х	х
Cyanide (Free)	SM 4500CN F	Х	Х
Cyanide (Total)	EPA 335.4	Х	Х
Cyanogen Chloride (Screen)	⁺ 335 Mod (WC-24467)	Х	
Diquat and Paraquat	EPA 549.2	Х	
DBP and HAA	SM 6251 B	Х	
Dissolved Organic Carbon	SM 5310 C	Х	
Dissolved Oxygen EDB/DCBP/TCP	SM 4500-O G EPA 504.1	Х	Х
EDB/DCBP/TCP			
Disinfection Byproducts	EPA 551.1	Х	
EDTA and NTA	+ WC-2454	Х	
Endothall	EPA 548.1, +(LCMS-2445)	Х	
Fluoride	SM 4500F C	Х	Х
Glyphosate	EPA 547	Х	
Glyphosate and AMPA	+LCMS-3618	X	
Gross Alpha and Gross Beta	EPA 900.0	X	Х

s.com/Eaton	B.H (11/ -)	Potable	Waste
Test(s)	Method(s)	Water *	Water
Gross Alpha coprecipitation	SM 7110 C	х	x
Hardness	SM 2340 B	Х	Х
Hexavalent Chromium	EPA 218.6,	Х	Х
Hexavalent Chromium	EPA 218.7,	Х	
Hexavalent Chromium	SM 3500-Cr B		Х
Inorganic Anions and DBPs	EPA 300.0	X	X
Norganic Anions and DBPs	EPA 300.1	X	
Kjeldahl Nitrogen	EPA 351.2		Х
Metals	EPA 200.7, EPA200.8	x	х
Nitrosamines	EEA-Agilent 521.1 (GCMS-24250)	х	
Nitrate/Nitrite Nitrogen	EPA 353.2	Х	Х
Odor	SM2150B	X	
Organohalide Pesticides			
and PCB	EPA 505	Х	
Ortho Phosphate	SM 4500P E	Х	
Oxyhalides Disinfection	EPA 317.0		
Byproducts	EPA 317.0	Х	
Perchlorate	EPA 331.0	Х	
Perchlorate (Low and High Levels)	EPA 314.0	х	
Perfluorinated Alkyl Acids	EPA 533, EPA	×	
PPCP and EDC	537, EPA 537.1		
PPCP and EDC	*LCMS-2443	Х	
рН	EPA 150.1 SM 4500-H+ B	Х	х
	*WC 2493 (EPA		
Phenolics – Low Level	420.2 and EPA 420.4 MOD)	Х	x
Phenylurea Pesticides/Herbicides	+LCMS-2448	x	
Radium-226, Radium-228	GA Tech (Rad- 2374)	x	
Radon-222	SM 7500RN	Х	
Residue (Filterable)	SM 2540C	Х	Х
Residue (Non-Filterable)	SM 2540D		Х
Residue (Total)	SM 2540B		Х
Residue (Volatile)	EPA 160.4		Х
Semi-Volatile Compounds	EPA 525.2	X	
Silica	SM 4500-SiO2 C	х	Х
Sulfide	SM 4500-S D		Х
Sulfite	SM 4500-SO3 B	Х	Х
Surfactants	SM 5540C	X	Х
Taste and Odor	SM 6040 E	X	
Total Organic Carbon	SM 5310 C	Х	Х
Total Phenols	EPA 420.1		Х
Total Phenols	EPA 420.4	Х	Х
Triazine Pesticides and their Degradates	+LCMS-3617	х	
Turbidity	EPA 180.1	Х	Х
Uranium by ICP/MS	EPA 200.8	Х	
UV 254 Organic Constituents	SM 5910B	х	
VOCs	EPA 524.2	Х	
VOCs	† (GCMS 2412) by EPA 524.2	x	
V 003	modified	^	

^(*) includes: Bottled Water, Drinking Water and Water as Component of Food & Beverage.

⁽⁺⁾ In-House Method

Acknowledgement of Samples Received

Addr: City of Antioch
Post Office Box 5007
Antioch, CA 94531-5007

Client ID: ANTIOCH-CA Folder #: 1002300 Project: SPECIAL Sample Group: Soil 2022

Attn: Laura A. Villasana Phone: 925-779-7024 Project Manager: Alejandra D Gomez Phone: 626-386-1194

PO #: P150193_exp063015_NTE_20K

The following samples were received from you on **April 13, 2022** at **10:00**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using Eurofins Eaton Analytical, LLC.

Sample #	Sample ID		Sample Date
202205050002 S A B C N S	Site #1	04/12/2022 1150	
	Antimony TTLC Subbed	Arsenic TTLC Subbed	Barium TTLC Subbed
202205050002	Beryllium TTLC Subbed	Cadmium TTLC Subbed	Chromium TTLC Subbed
	Cobalt TTLC Subbed	Lead TTLC Subbed	
	Mercury TTLC Subbed	Nickel TTLC Subbed	
	Selenium TTLC Subbed	Silver TTLC Subbed	Thallium TTLC Subbed
202205050002	Vanadium TTLC Subbed	Zinc TTLC Subbed	@8081EDD_Solid_Calscience
	@8082EDD in ug/kg_Calscience	@8151EDD Solid_Calscience	@8260EDD Soil
	@8270C_PAH-SIM_Solid	@8270EDD Solid	@8290_Solid_PM
	@RADEDD by EPA 9310	Oil and Grease by 1664 HEM SGT	Oil and Grease Solid_LLI
	TPH 8015 Diesel Motor Oil Soil		

Test Description

@8081EDD_Solid_Calscience -- 5157_8081 Standard List

@8082EDD in ug/kg_Calscience -- 8082

@8151EDD Solid_Calscience -- 576 - Chlorinated Herbicides

@8260EDD Soil -- Volatile Organic Compounds by EPA 8260B

@8270C_PAH-SIM_Solid -- 8270C PAH SIM

@8270EDD Solid -- 8270

@8290_Solid_PM -- Dioxin/Furan - MDL and RL reporting

@RADEDD by EPA 9310 -- Gross Alpha/Beta Hazardous Waste

Reported: 06/21/2022

CHAIN OF CUSTODY RECORD	SAMPLES CHECKED AGAINST COOPY	SAMPLES LOGGED IN BY: SAMPLES REC'D DAY OF COLLECTION? (Observation= \$\circ{\circ}{\circ}\$) (Corr.Factor \$\circ{\circ}{\circ}\$) (Final = \$\circ{\circ}{\circ}\$)	compliance samples Complianc	Type of samples (circle one): ROUTINE SPECIAL CONFIRMATION SEE ATTACHED KIT ORDER FOR ANALYSES List ALL ANALYSES REQUIRED (cont.): ROUTINE SPECIAL CONFIRMATION (circle one): ROUTINE SPECIAL CONFI	SAMDIES	COMMENTS		ea Water SW = Bottled Water SW = Storm Water SL = Sludge COMPANYTITIE	of Antioch 4119	1/11/22 4/12/22
EUROFINS EATON ANALYZION.	LOGIN COMMENTS:	SAMPLE TEMP RECEIVED AT: (Other) IR Gun ID = Compliance Acceptance Criteria: (Chemistry: 4±2°C) (Microb TYPE OF ICE: Real Synthetic	METHOD OF SHIPMENT: Pick-Up / Walk-In /F PROJECT CODE:	JP:	ATAG GJEI		200	CFW = Chlor(am)inated Finished Water SEAW = Sea Water FW = Other Finished Water WW = Waste Water PRINT NAME	Edres Arguns 100 NA- CAG-12	15
Eaton Analytical	750 Royal Oaks Drive, Suite 100 MonrOvia, CA 91016-3629	Phone: 026 386 1100 Fax: 626 386 1101 800 566 LABS (800 566 5227) Website: www.EatonAnalytical.com	Y SAMPLER. Y NAME: Anh'och	EEA CLIENT CODE: ANTOCH-CA TAT requested: rush by adv notice only		1.122 1.34 Ar # 1 S.tc # 1 S.tc # 1		V = Raw Surface Water V = Raw Ground Water SIGNATURE	RECEIVED BY: ABUS 4-6 I	3"

Page 5

Notes

(Tustin Lab)

Submitted:

Gross Alpha & Beta to be performed by Eurofins - St. Louis Lab
 Dioxins & Furans to be performed by Eurofins - Lancaster Lab

Kevin Calcagno

Eaton Analytical

Contact: Laura A. Villasana
Company: City of Antioch
Address: Post Office Box 5007

Antioch, CA 94531-5007

Phone: 925-779-7024 Fax: 925-779-0272

applicable taxes unless noted below.

E-mail: waterquality@ci.antioch.ca.us

Quote Ref #: Q202203140023
Sample Matrix: Soil

Testing Frequency: As Needed
Lab Turnaround Time: 15 Days
Estimated Start Date: 25-Mar-2022

Payment Terms: NET 30

TEM QTY	DESCRIPTION	METHOD	UNIT PRICE	EXT'D PRICE
Inorganics				
. 2	Metals - Title 22	EPA 6010B/7470A	\$125.00	\$250.00
2	Total Petroleum Hydrocarbons	EPA 1664 SGC	\$60.00	\$120.00
Organics				
2	Dioxins & Furans	EPA 8290	\$630.00	\$1,260.00
2	Herbicides	EPA 8151	\$190.00	\$380.00
2	PCB's	EPA 8082	\$90.00	\$180.00
2	Pesticides	EPA 8081A	\$125.00	\$250.00
2	Semivolatile Organics	EPA 8270	\$195.00	\$390.00
2	Semivolatile Organics - PAHs	EPA 8270 SIM	\$145.00	\$290.00
2	TPH - Diesel & Motor Oil	EPA 8015	\$75.00	\$150.00
2	Volatile Organics	EPA 8260B	\$110.00	\$220.00
Radiologica	ıls			
2	Gross Alpha/Beta	EPA 900.0	\$105.00	\$210.00
Sample Mai	nagement			
1	Sample Kit Delivery		\$0	\$0
Data Delive	rables			
1	Hardcopy Reports (via PDF)		\$0	\$0
1	QC Level II		\$0	\$0
1	Website Data Tracking & Mgmt.	·	\$0	\$0
			Grand Total	: \$3,700.00

We are pleased to submit the following quotation: Prices are firm thru 12/31/2022, provided PO is received within 45 days and prior to receipt of samples. Work may not begin, or is COD, until receipt of a completed vendor application & credit approval. Client is responsible for sample collection and delivery to the lab in acceptable condition within 24 hours. Payment for services is due upon receipt of invoice and not contingent upon third party payments. All other Eurofins Eaton Analytical, LLC standard terms and conditions apply unless otherwise specified herein. Quote does not include any

Accepted:

RECEIPT OF SAMPLES BY EUROFINS EATON ANALYTICAL, LLC CONSTITUTES ACCEPTANCE OF THE ABOVE TERMS & CONDITIONS, NOT WITHSTANDING ANY PROVISIONS TO THE CONTRARY IN CLIENTS PURCHASE ORDER, UNLESS AN ALTERNATIVE AGREEMENT HAS BEEN SIGNED BY US.

3) EPA 1664, 8015M, 8260/5035, 8270, 8082, 8270 SIM, 8081, 6010/7470, and 8151 to be performed by Eurofins - Calscience

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007

Samples Received on: 04/13/2022 10:00

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
	202205050002	Site #1				
06/06/2022 15:35	1,2,3,4,6,7,8-HpCDD		21		ng/kg	6.1
05/23/2022 14:59	Arsenic TTLC Subbed		6.38		mg/kg	2.96
05/23/2022 14:59	Barium TTLC Subbed		117		mg/kg	2.96
05/23/2022 14:59	Beryllium TTLC Subbe	d	0.567		mg/kg	0.493
05/23/2022 14:59	Chromium TTLC Subbo	ed	16.8		mg/kg	0.985
05/23/2022 14:59	Cobalt TTLC Subbed		7.11		mg/kg	0.985
05/23/2022 14:59	Copper TTLC Subbed		22.6		mg/kg	1.97
06/09/2022 15:53	Gross Alpha (Subbed)		17.5	15	pCi/g	10
06/09/2022 15:53	Gross Beta (Subbed)		14.5		pCi/g	10
05/23/2022 14:59	Lead TTLC Subbed		6.69		mg/kg	1.97
05/23/2022 14:59	Nickel TTLC Subbed		17.4		mg/kg	1.97
06/06/2022 15:35	OCDD		150		ng/kg	12
06/06/2022 15:35	OCDF		13		ng/kg	12
05/13/2022 11:53	Oil and Grease		53.1		mg/kg	49.8
06/06/2022 15:35	Total HpCDD		40		ng/kg	6.1
06/06/2022 15:35	Total HpCDF		10		ng/kg	6.1
06/06/2022 15:35	Total HxCDD		12		ng/kg	6.1
06/06/2022 15:35	Total HxCDF		9.8		ng/kg	6.1
06/06/2022 15:35	Total TCDF		2.9		ng/kg	1.2
05/23/2022 14:59	Vanadium TTLC Subbe	ed	35.3		mg/kg	0.985
05/23/2022 14:59	Zinc TTLC Subbed		54.1		mg/kg	4.93

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch

Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007 Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
Site #1	(20220505000	<u>)2)</u>				Sample	ed on 04/12	2022 115	0
		EPA 82700	: - 8270						
05/12/22	05/18/22 15:30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	02.0	(EPA 8270C)	1,2,4-Trichlorobenzene	ND (H H3)	mg/kg	2	1
05/12/22	05/18/22 15:30			(EPA 8270C)	1,2-Dichlorobenzene	ND (H H3)	mg/kg	0.98	1
05/12/22	05/18/22 15:30			(EPA 8270C)	1,3-Dichlorobenzene	ND (H H3)	mg/kg	0.98	1
05/12/22	05/18/22 15:30			(EPA 8270C)	1,4-Dichlorobenzene	ND (H H3)	mg/kg	0.98	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4,5-Trichlorophenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4,6-Trichlorophenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4-Dichlorophenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4-Dimethylphenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4-Dinitrophenol	ND (H H3)	mg/kg	2	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4-Dinitrotoluene	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,6-Dinitrotoluene	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-chloronaphthalene	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-chlorophenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-methylnaphthalene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-methylphenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-nitroaniline	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-nitrophenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	3,3-Dichlorobenzidine	ND (H H3)	mg/kg	2.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	3-nitroaniline	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4,6-Dinitro-2-methylphenol	ND (H H3)	mg/kg	2.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-Bromophenylphenylether	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-Chloro-3-methylphenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-Chloroaniline	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-Chlorophenylphenylether	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-methylphenol	ND (H H3)	mg/kg	1	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-Nitroaniline	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	4-Nitrophenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	acenaphthene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	acenaphthylene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	anthracene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	azobenzene	ND (H H3)	mg/kg	0.5	1
05/12/22				(EPA 8270C)	benzidine	ND (H H3 *-)	mg/kg	5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	benzo(a)anthracene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	benzo(a)pyrene	ND (H H3)	mg/kg	0.02	1

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007

Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Drop Potoh	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
	05/18/22 15:30	Ртер ваки	Analytical Batch		<u> </u>	ND (H H3)		0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	benzo(b)fluoranthene benzo(ghi)perylene	ND (H H3)	mg/kg mg/kg	0.02	1
	05/18/22 15:30			(EPA 8270C)		ND (H H3)	mg/kg	0.02	1
	05/18/22 15:30			(EPA 8270C)	benzo(k)fluoranthene Benzoic Acid	, ,		2.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)		ND (H H3)	mg/kg	0.5	1
				(EPA 8270C)	Benzyl Alcohol	ND (H H3)	mg/kg		1
05/12/22 05/12/22	05/18/22 15:30			(EPA 8270C)	bis(2-Chloroethoxy)methane	ND (H H3)	mg/kg	0.5	
	05/18/22 15:30			(EPA 8270C)	bis(2-chloroethyl)ether	ND (H H3)	mg/kg	2.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	bis(2-Chloroisopropyl)ether	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	bis(2-ethylhexyl)phthalate	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Butylbenzylphthalate	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Chrysene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	dibenzo(a.h)anthracene	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	dibenzofuran	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Diethylphthalate	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Dimethylphthalate	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Di-N-butylphthalate	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Di-N-octylphthalate	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Fluoranthene	ND (H H3)	mg/kg	0.02	1
	05/18/22 15:30			(EPA 8270C)	Fluorene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Hexachlorobenzene	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Hexachlorobutadiene	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Hexachlorocyclopentadiene	ND (H H3)	mg/kg	1.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Hexachloroethane	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Indeno(1,2,3,c,d)Pyrene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Isophorone	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Naphthalene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Nitrobenzene	ND (H H3)	mg/kg	2	1
05/12/22	05/18/22 15:30			(EPA 8270C)	N-nitrosodimethylamine	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	N-nitroso-di-n-propylamine	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	N-nitroso-diphenylamine	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	pentachlorophenol	ND (H H3)	mg/kg	2.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Phenanthrene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Phenol	ND (H H3)	mg/kg	0.5	1
05/12/22	05/18/22 15:30			(EPA 8270C)	Pyrene	ND (H H3)	mg/kg	0.02	1
05/12/22	05/18/22 15:30			(EPA 8270C)	2,4,6-Tribromophenol	64	%		1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-Fluorobiphenyl	55	%		1
05/12/22	05/18/22 15:30			(EPA 8270C)	2-Fluorophenol	68	%		1

Rounding on totals after summation.

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch

Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007 Samples Received on: 04/13/2022 10:00

05/12/22 05/12/22	05/40/00 45 00				Analyte	Result	Units	MRL	Dilution
05/12/22	05/18/22 15:30			(EPA 8270C)	Nitrobenzene-d5	52	%		1
	05/18/22 15:30			(EPA 8270C)	Phenol-d5	70	%		1
05/12/22	05/18/22 15:30			(EPA 8270C)	Terphenyl-d14	58	%		1
		EPA 6010 -	Chromium TTL	LC Subbed					
05/21/22	05/23/22 14:59			(EPA 6010)	Chromium TTLC Subbed	16.8	mg/kg	0.985	5
		EPA 6010 -	Arsenic TTLC	Subbed					
05/21/22	05/23/22 14:59			(EPA 6010)	Arsenic TTLC Subbed	6.38	mg/kg	2.96	5
		EPA 6010 -	Nickel TTLC S	ubbed					
05/21/22	05/23/22 14:59			(EPA 6010)	Nickel TTLC Subbed	17.4	mg/kg	1.97	5
		EPA 6010 -	Barium TTLC S	Subbed					
05/21/22	05/23/22 14:59			(EPA 6010)	Barium TTLC Subbed	117	mg/kg	2.96	5
		EPA 6010 -	Antimony TTL						
05/21/22	05/23/22 14:59			(EPA 6010)	Antimony TTLC Subbed	ND	mg/kg	9.85	5
		EPA 6010 -	Cadmium TTL	C Subbed					
05/21/22	05/23/22 14:59			(EPA 6010)	Cadmium TTLC Subbed	ND (J)	mg/kg	0.493	5
		EPA 6010 -	Beryllium TTL	C Subbed					
05/21/22	05/23/22 14:59			(EPA 6010)	Beryllium TTLC Subbed	0.567	mg/kg	0.493	5
		EPA 6010 -	Cobalt TTLC S						
05/21/22	05/23/22 14:59			(EPA 6010)	Cobalt TTLC Subbed	7.11	mg/kg	0.985	5
		EPA 6010 -	Copper TTLC						
05/21/22	05/23/22 14:59			(EPA 6010)	Copper TTLC Subbed	22.6	mg/kg	1.97	5
		EPA 6010 -	Lead TTLC Su				_		
05/21/22	05/23/22 14:59			(EPA 6010)	Lead TTLC Subbed	6.69	mg/kg	1.97	5
		EPA 6010 -	Molybdenum 1						_
05/21/22	05/23/22 14:59			(EPA 6010)	Molybdenum TTLC Subbed	ND (J)	mg/kg	1.97	5
05/04/00	05/40/00 05 50	EPA 6010 -	Selenium TTL0		0.1	ND		0.00	_
05/21/22	05/18/22 05:50			(EPA 6010)	Selenium TTLC Subbed	ND	mg/kg	3.08	5
05/04/00	05/00/00 44/50	EPA 6010 -	Silver TTLC Su		O'less TTI O Ookkeed	ND		4.40	_
05/21/22	05/23/22 14:59			(EPA 6010)	Silver TTLC Subbed	ND	mg/kg	1.48	5
05/04/00	05/00/00 44/50	EPA 6010 -	Thallium TTLC		The West TTLO Code has a	ND		0.05	_
05/21/22	05/23/22 14:59			(EPA 6010)	Thallium TTLC Subbed	ND	mg/kg	9.85	5
05/04/00	05/00/00 44/50	EPA 6010 -	Vanadium TTL		Venedime III O Odbbed	05.0		0.005	_
05/21/22	05/23/22 14:59	EDA 6046	7: TT: 0 0 :	(EPA 6010)	Vanadium TTLC Subbed	35.3	mg/kg	0.985	5
05/04/00	05/02/02 14:50	EPA 6010 -	Zinc TTLC Sub		Zina TTI C Subbad	E4.1	ma/lea	4.00	5
03/21/22	05/23/22 14:59	EDA 7474	M	(EPA 6010)	Zinc TTLC Subbed	54.1	mg/kg	4.93	5
05/12/22	05/12/22 15:40	EPA 7471A	- Mercury TTL		Moroupy TTI C Syphod	ND / LLI	ma/ka	0.0004	4
03/12/22	05/13/22 15:19			(EPA 7471A)	Mercury TTLC Subbed ds by EPA 8260B	ND (J H)	mg/kg	0.0801	1

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007

Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1,1,2-Tetrachloroethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1,1-Trichloroethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1,2,2-Tetrachloroethane	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1,2-Trichloro-1,2,2-trifluoroethane	ND (H H3)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1,2-Trichloroethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1-Dichloroethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1-Dichloroethene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,1-Dichloropropene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2,3-Trichlorobenzene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2,3-Trichloropropane	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2,4-Trichlorobenzene	ND (H H3)	ug/kg	0.5	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2,4-Trimethylbenzene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dibromo-3-chloropropane	ND (H H3)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dibromoethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dichlorobenzene	ND (H H3)	ug/kg	0.5	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dichloroethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dichloropropane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,3,5-Trimethylbenzene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,3-Dichlorobenzene	ND (H H3)	ug/kg	0.5	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,3-Dichloropropane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,4-Dichlorobenzene	ND (H H3)	ug/kg	0.5	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1-Chlorohexane	NA	ug/kg	23	1
05/17/22	05/17/22 03:10			(EPA 8260B)	2,2-Dichloropropane	ND (H H3)	ug/kg	4.9	1
05/17/22	05/17/22 03:10			(EPA 8260B)	2-Butanone (MEK)	ND (H H3)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	2-Chlorotoluene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	2-Hexanone	ND (H H3 *+)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	4-chlorotoluene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	4-Isopropyltoluene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	4-methyl-2-Pentanone	ND (H H3)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Acetone	ND (H H3 F1)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Acrolein	NA	ug/kg		1
05/17/22	05/17/22 03:10			(EPA 8260B)	Acrylonitrile	NA	ug/kg		1
05/17/22	05/17/22 03:10			(EPA 8260B)	Benzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Bromobenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Bromochloromethane	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Bromodichloromethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Bromoform	ND (H H3)	ug/kg	4.9	1

Rounding on totals after summation.

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007

Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
05/17/22	05/17/22 03:10			(EPA 8260B)	Bromomethane	ND (H H3)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Carbon disulfide	ND (H H3)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Carbon Tetrachloride	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Chlorobenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Chloroethane	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Chloroform	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Chloromethane	ND (H H3)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	cis-1,2-Dichloroethene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	cis-1,3-Dichloropropene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Dibromochloromethane	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Dibromomethane	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Dichlorodifluoromethane	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	DIPE	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Ethanol	ND (H H3)	ug/kg	250	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Ethyl Acetate	NA	ug/kg	23	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Ethyl t-butyl ether	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Ethylbenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Ethylene Dibromide	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	hexachlorobutadiene	NA	ug/kg	23	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Isopropylbenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	m,p-Xylenes	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Methyl Tert-butyl ether (MTBE)	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Methylene chloride	ND (H H3)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	naphthalene	ND (H H3)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	n-Butylbenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	n-Propylbenzene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	o-Xylene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	p-Isopropyltoluene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	sec-Butylbenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Styrene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	TAME	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	tert-Butylbenzene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Tertiary Butyl Alcohol	ND (H H3)	ug/kg	20	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Tetrachloroethene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Tetrachloroethylene (PCE)	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Toluene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Total xylenes	ND (H H3)	ug/kg	2	1

Rounding on totals after summation.

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch

Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007 Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
05/17/22	05/17/22 03:10			(EPA 8260B)	trans-1,2-Dichloroethene	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	trans-1,3-Dichloropropene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Trichloroethene	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Trichloroethylene (TCE)	ND (H H3)	ug/kg	2	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Trichlorofluoromethane	ND (H H3)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Vinyl Acetate	ND (H H3 F1)	ug/kg	9.8	1
05/17/22	05/17/22 03:10			(EPA 8260B)	Vinyl chloride	ND (H H3)	ug/kg	0.98	1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dichlorobenzene-d4	92	%		1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,2-Dichloroethane-d4	92	%		1
05/17/22	05/17/22 03:10			(EPA 8260B)	1,4-Difluorobenzene	97	%		1
05/17/22	05/17/22 03:10			(EPA 8260B)	4-Bromofluorobenzene	97	%		1
05/17/22	05/17/22 03:10			(EPA 8260B)	Dibromofluoromethane	98	%		1
05/17/22	05/17/22 03:10			(EPA 8260B)	Toluene-d8	100	%		1
		EPA 9310 -	- Gross Alpha/B	eta Hazardous	s Waste				
	06/09/22 15:53			(EPA 9310)	Alpha Min Detect Activity	12.6	pCi/g		1
	06/09/22 15:53			(EPA 9310)	Beta Min Detect Activity	7.69	pCi/g		1
	06/09/22 15:53			(EPA 9310)	Beta Two Sigma Error	5.91	pCi/g		1
	06/09/22 15:53			(EPA 9310)	Gross Alpha (Subbed)	17.5 (G)	pCi/g	10	1
	06/09/22 15:53			(EPA 9310)	Gross Alpha Two Sigma Error	9.41	pCi/g		1
	06/09/22 15:53			(EPA 9310)	Gross Beta (Subbed)	14.5	pCi/g	10	1
		EPA8290 -	Dioxin/Furan -	MDL and RL re	eporting				
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,4,6,7,8-HpCDD	21 (H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,4,6,7,8-HpCDF	ND (J H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,4,7,8,9-HpCDF	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,4,7,8-HxCDD	ND (J H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,4,7,8-HxCDF	ND (J H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,6,7,8-HxCDD	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,6,7,8-HxCDF	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,7,8,9-HxCDD	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,7,8,9-HxCDF	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,7,8-PeCDD	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	1,2,3,7,8-PeCDF	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	2,3,4,6,7,8-HxCDF	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	2,3,4,7,8-PeCDF	ND (J H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	2,3,7,8-TCDD	ND (H H3)	ng/kg	1.2	1
06/03/22	06/06/22 15:35			(EPA8290)	2,3,7,8-TCDF	ND (J H H3 B)	ng/kg	1.2	1
06/03/22	06/06/22 15:35			(EPA8290)	OCDD	150 (H H3 B)	ng/kg	12	1

Rounding on totals after summation.

1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch

Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007 Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
06/03/22	06/06/22 15:35			(EPA8290)	OCDF	13 (H H3 B)	ng/kg	12	1
06/03/22	06/06/22 15:35			(EPA8290)	Total HpCDD	40 (H H3 B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	Total HpCDF	10 (H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	Total HxCDD	12 (H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	Total HxCDF	9.8 (H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	Total PeCDD	ND (J H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	Total PeCDF	ND (J H H3 q B)	ng/kg	6.1	1
06/03/22	06/06/22 15:35			(EPA8290)	Total TCDD	ND (J H H3 q)	ng/kg	1.2	1
06/03/22	06/06/22 15:35			(EPA8290)	Total TCDF	2.9 (H H3 q B)	ng/kg	1.2	1
		SW-846 90	71B - Oil and G	rease					
	05/13/22 11:53			(SW-846 9071B)	Oil and Grease	53.1 (H)	mg/kg	49.8	1
		EPA 8270C	- 8270C PAH S	IM					
	05/18/22 15:30			(EPA 8270C)	1,6,7-Trimethylnaphthalene	NA	mg/kg		1
	05/18/22 15:30			(EPA 8270C)	1-Methylnaphthalene	ND (H H3)	mg/kg	0.02	1
	05/18/22 15:30			(EPA 8270C)	1-Methylphenanthrene	NA	mg/kg		1
	05/18/22 15:30			(EPA 8270C)	2,6-Dimethylnaphthalene	NA	mg/kg		1
	05/18/22 15:30			(EPA 8270C)	2-methylnaphthalene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	acenaphthylene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Acenapthene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	anthracene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	benzo(a)anthracene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	benzo(a)pyrene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	benzo(b)fluoranthene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Benzo(e)pyrene	NA (H H3)	mg/kg	0.01	1
	05/18/22 15:30			(EPA 8270C)	Benzo(g,h,i)perylene	ND (H H3)	mg/kg	0.02	1
	05/18/22 15:30			(EPA 8270C)	benzo(k)fluoranthene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Biphenyl	NA	mg/kg	0.01	1
	05/18/22 15:30			(EPA 8270C)	chrysene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Dibenz(a,h)Anthracene	ND (H H3)	mg/kg	0.02	1
	05/18/22 15:30			(EPA 8270C)	Dibenzothiophene	NA	mg/kg	0.01	1
	05/18/22 15:30			(EPA 8270C)	fluoranthene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	fluorene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Indeno(1,2,3,c,d)Pyrene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	naphthalene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	Perylene	NA	mg/kg	0.01	1
	05/18/22 15:30			(EPA 8270C)	phenanthrene	ND (H H3)	mg/kg	0.5	1
	05/18/22 15:30			(EPA 8270C)	pyrene	ND (H H3)	mg/kg	0.5	1

Rounding on totals after summation.

1 800 566 LABS (1 800 566 5227)

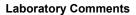
Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch

Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007 Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
	05/18/22 15:30			(EPA 8270C)	Total PAH	NA	mg/kg	0.01	1
	05/18/22 15:30			(EPA 8270C)	Dibutylchlorendate	NA	%		1
	05/18/22 15:30			(EPA 8270C)	Tetrachlorometaxylene	75	%		1
		EPA 1664 H	HEM-SGT - Oil a	and Grease by	1664 HEM SGT				
	05/13/22 11:53			(EPA 1664 HEM-SGT)	Oil and Grease with SGT	ND (J H)	mg/kg	49.8	1
			576 - Chlorin	ated Herbicide					
	05/19/22 23:30	(1)		(EPA 8151A)	2,4,5-T	ND (H H3 *+)	ug/kg	9.9	1
	05/19/22 23:30	(1)		(EPA 8151A)	2,4,5-TP (Silvex)	ND (H H3 *1)	ug/kg	9.9	1
	05/19/22 23:30	(1)		(EPA 8151A)	2,4-D	ND (H H3)	ug/kg	99	1
	05/19/22 23:30	(1)		(EPA 8151A)	2,4-DB	ND (H H3 *+ *1)	ug/kg	99	1
	05/19/22 23:30	(1)		(EPA 8151A)	Dalapon	ND (H H3)	ug/kg	250	1
	05/19/22 23:30	(1)		(EPA 8151A)	Dicamba	ND (H H3)	ug/kg	9.9	1
	05/19/22 23:30	(1)		(EPA 8151A)	Dichlorprop	ND (H H3 *1)	ug/kg	99	1
	05/19/22 23:30	(1)		(EPA 8151A)	Dinoseb	ND (H H3 *1)	ug/kg	99	1
	05/19/22 23:30	(1)		(EPA 8151A)	MCPA	ND (H H3 *1)	ug/kg	9900	1
	05/19/22 23:30	(1)		(EPA 8151A)	MCPP	ND (H H3*1)	ug/kg	9900	1
	05/19/22 23:30	(1)		(EPA 8151A)	2,4-Dichlorophenylacetic acid	112	%		1
		EPA 8082 -	8082						
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1016	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1221	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1232	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1242	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1248	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1254	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1260	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1262	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	Aroclor 1268	ND (H H3)	ug/kg	50	1
	05/16/22 13:23	(1)		(EPA 8082)	2,4,5,6-tetrachloro-m-xylene	61	%		1
	05/16/22 13:23	(1)		(EPA 8082)	Decachlorobiphenyl	78	%		1
		EPA 8015N	1 - 6231 Motor (Dil and 6232 Di	iesel				
05/12/22	05/14/22 03:26			(EPA 8015M)	Diesel	ND (H H3)	mg/kg	4.8	1
05/12/22	05/14/22 03:26			(EPA 8015M)	Motor Oil	ND (H H3)	mg/kg	24	1
		EPA 8081A	- 5157_8081 S	tandard List					
	05/16/22 08:17	(1)	_	(EPA 8081A)	4,4-DDD	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	4,4-DDE	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	4,4-DDT	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Aldrin	ND (H H3)	ug/kg	5	1

Rounding on totals after summation.


1 800 566 LABS (1 800 566 5227)

Report: 1002300 Project: SPECIAL Group: Soil 2022

City of Antioch Laura A. Villasana Post Office Box 5007 Antioch, CA 94531-5007

Samples Received on: 04/13/2022 10:00

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
	05/16/22 08:17	(1)		(EPA 8081A)	alpha-BHC	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	beta-BHC	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Chlordane (technical)	ND (H H3)	ug/kg	25	1
	05/16/22 08:17	(1)		(EPA 8081A)	delta-BHC	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Dieldrin	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Endosulfan I	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Endosulfan II	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Endosulfan Sulfate	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Endrin	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Endrin Aldehyde	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Endrin Ketone	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	gamma-BHC (Lindane)	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Heptachlor	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Heptachlor Epoxide	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Methoxychlor	ND (H H3)	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Total Pesticides	ND	ug/kg	5	1
	05/16/22 08:17	(1)		(EPA 8081A)	Toxaphene	ND (H H3)	ug/kg	25	1
	05/16/22 08:17	(1)		(EPA 8081A)	Decachlorobiphenyl	80	%		1
	05/16/22 08:17	(1)		(EPA 8081A)	Tetrachloro-m-xylene	61	%		1

Report: 1002300

Project: SPECIAL

Group: Soil 2022

Tel: (626) 386-1100 Fax: (866) 988-3757

1 800 566 LABS (1 800 566 5227)

City of Antioch Laura A. Villasana Post Office Box 5007

Antioch, CA 94531-5007

Folder Comments

Results for 8270C, 8260B, 8015B Diesel Range Organics, 8081, 8082, 8151, Metals and Oil and Grease are submitted by Eurofins Calscience in Tustin CA Results for 8290A Dioxins and Furans are submitted by Eurofins Sacramento, West Sacramento, CA CA cert 2897 exp 1-31-23 Analytical results for Gross Alpha and Gross Beta are submitted by Eurofins St. Louis, Earth City, MO

Flags Legend:

- H- (FL only) Value based on field kit determination; results may not be accurate. (Not acceptable for compliance)
- J Analyte is positively identified, but tentatively quantified as an estimate concentration. The analyte was either detected between MDL and MRL or did not meet any one of the required QC criteria.

Environment Testing America

ANALYTICAL REPORT

Eurofins St. Louis 13715 Rider Trail North Earth City, MO 63045 Tel: (314)298-8566

Laboratory Job ID: 160-45718-1

Laboratory Sample Delivery Group: Site #1

Client Project/Site: 1002300

For:

Eurofins Eaton Analytical 750 Royal Oaks Drive Monrovia, California 91016

Attn: Monrovia Report To

Jayna Aust

Authorized for release by: 6/13/2022 10:06:42 AM

Jayna Awalt, Project Manager II (314)298-8566

Jayna.Awalt@et.eurofinsus.com

·····LINKS ·······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Eurofins Eaton Analytical Project/Site: 1002300

Laboratory Job ID: 160-45718-1

SDG: Site #1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Chain of Custody	4
Receipt Checklists	5
Definitions/Glossary	6
Method Summary	7
Sample Summary	8
Client Sample Results	9
QC Sample Results	10
OC Association Summary	11

Case Narrative

Client: Eurofins Eaton Analytical

Job ID: 160-45718-1 Project/Site: 1002300

SDG: Site #1

Job ID: 160-45718-1

Laboratory: Eurofins St. Louis

Narrative

Job Narrative 160-45718-1

Receipt

The sample was received on 5/18/2022 10:30 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

RAD

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

The detection goal was not met for the following sample(s). The samples and batch QC were prepped at full volume. Matrix interferences are suspected because the method blank achieved the detection goal demonstrating acceptable sample preparation and instrument performance: 202205050002 (160-45718-1). Analytical results are reported with the detection limit achieved.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

◆REPORTING REQUIRMENTS: *Do Not Combine Reports with any other samples submitted under different Folder Numbers!* Report & Invoice must have the Folder# 1002300 Job # 1000014

Eaton Analytical

eurofins 💸

13715 Rider Trail North **TestAmerica St Louis**

Ship To:

Earth City, MO 63045

Report all quality control data according to Method. Include dates analyzed. Date extracted (if extracted) and Method reference on the report. Results must have Complete data & QC with Approval Signature.

Eurofins Eaton Analytical, LLC 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Reports: Jackie Contreras Sub-Contracting Administrator EMAIL TO: Eaton-MonroviaSubContract@eurofinset.com Invoices to: Eurofins Eaton Analytical, LLC Phone (626) 386-1165 Fax (626) 386-1122

Exp Date for requested tests + matrix. Provide in each Report the Specified StateCertification # and

Samples from: CALIFORNIA

Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605

Fax: 314-298-8757

Phone: 314-298-8566

PWSID Clip Code

Sample Date & Time Matrix

04/12/22 1150

Static ID:

JLS

Sample Point ID: Facility ID: **Analysis Requested** Sample Event: **Prep Method** Sample type: Method

Client Sample ID for reference onl Site #1

202205050002

Sample ID

Report Due: 05/11/2022

Folder #: 1002300 Gross Alpha/Beta Hazardous Waste

160-45718 Chain of Custody

An Acknowledgement of Receipt is requested to attn. Jackie Contreras NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS Time 1030 5/18 Fage 1 of 1 Time Time Time Date-furters Date Date Date hour Sample Control Sample Control Relinquished by: Relinquished by: Received by: Received by:

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www.EurofinsUS.com/Eaton

EPA 9310

Login Sample Receipt Checklist

Client: Eurofins Eaton Analytical

Job Number: 160-45718-1 SDG Number: Site #1

List Source: Eurofins St. Louis

Login Number: 45718 List Number: 1

Creator: Booker, Autumn R

Creator: Booker, Autumn R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Definitions/Glossary

Client: Eurofins Eaton Analytical Job ID: 160-45718-1

Project/Site: 1002300 SDG: Site #1

Qualifiers

R	a	d	
• •	ч	•	

DLC

Qualifier	Qualifier Description
G	The Sample MDC is greater than the requested RL.
U	Result is less than the sample detection limit.

Glossary

Giossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

Decision Level Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit** PQL

Presumptive **PRES Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins St. Louis

Method Summary

Client: Eurofins Eaton Analytical

Job ID: 160-45718-1 Project/Site: 1002300

SDG: Site #1

Method	Method Description	Protocol	Laboratory
9310	Gross Alpha / Beta (GFPC)	SW846	TAL SL
Dry and Grind	Preparation, Dry and Grind	None	TAL SL
Thin_Layer	Preparation, Thin Layer Technique	None	TAL SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: Eurofins Eaton Analytical Project/Site: 1002300

Job ID: 160-45718-1 SDG: Site #1

Lab Sample ID Client Sample ID Matrix Collected Received 160-45718-1 202205050002 Solid 04/12/22 11:50 05/18/22 10:30

Client: Eurofins Eaton Analytical
Project/Site: 1002300

Job ID: 160-45718-1
SDG: Site #1

Client Sample ID: 2022050500002 Lab Sample ID: 160-45718-1

Date Collected: 04/12/22 11:50 Matrix: Solid
Date Received: 05/18/22 10:30

Method: 9310 - 0	Bross Alpha	/ Beta (GF	PC)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Gross Alpha	17.5	G	9.19	9.41	10.0	12.6	pCi/g	06/09/22 10:15	06/09/22 15:53	1
Gross Beta	14.5		5.72	5.91	10.0	7.69	pCi/g	06/09/22 10:15	06/09/22 15:53	1

5

9

Client: Eurofins Eaton Analytical Job ID: 160-45718-1 Project/Site: 1002300 SDG: Site #1

Method: 9310 - Gross Alpha / Beta (GFPC)

Lab Sample ID: MB 160-569238/1-A

Matrix: Solid

Analysis Batch: 569272

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 569238

			Count	iotai						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Gross Alpha	3.703	U	3.31	3.34	10.0	5.19	pCi/g	06/09/22 10:15	06/09/22 15:53	1
Gross Beta	3.811		1.44	1.49	10.0	1.94	pCi/g	06/09/22 10:15	06/09/22 15:53	1

Lab Sample ID: LCS 160-569238/2-A

Matrix: Solid

Analysis Batch: 569272

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 569238

				Total						
	Spike	LCS	LCS	Uncert.					%Rec	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Gross Alpha	27.1	29.35		8.14	10.0	7.22	pCi/g	108	60 - 140	
Gross Beta	26.8	25.05		4.93	10.0	4.30	pCi/g	93	60 - 140	

Lab Sample ID: 160-45718-1 DU

Matrix: Solid

Analysis Batch: 569272

Client Sample ID: 202205050002

Prep Type: Total/NA

Prep Batch: 569238

,					Total					
	Sample	Sample	DU	DU	Uncert.					RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
Gross Alpha	17.5	G	14.14		6.94	10.0	8.72	pCi/g	 0.20	1
Gross Beta	14.5		13.70		4.42	10.0	5.10	pCi/g	0.08	1

QC Association Summary

Client: Eurofins Eaton Analytical Job ID: 160-45718-1 Project/Site: 1002300

SDG: Site #1

Rad

Leach Batch: 568753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-45718-1	202205050002	Total/NA	Solid	Dry and Grind	
160-45718-1 DU	202205050002	Total/NA	Solid	Dry and Grind	

Prep Batch: 569238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-45718-1	202205050002	Total/NA	Solid	Thin_Layer	568753
MB 160-569238/1-A	Method Blank	Total/NA	Solid	Thin_Layer	
LCS 160-569238/2-A	Lab Control Sample	Total/NA	Solid	Thin_Layer	
160-45718-1 DU	202205050002	Total/NA	Solid	Thin_Layer	568753

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-95147-1 Client Project/Site: 1002300

For:

Eurofins Eaton Analytical 750 Royal Oaks Drive Monrovia, California 91016

Attn: Jaclyn Contreras

Authorized for release by: 5/27/2022 4:24:16 PM
Sheila Luu, Project Mgmt. Assistant Sheila.Luu@et.eurofinsus.com

Designee for

Xuan Dang, Project Manager I (714)895-5494 Xuan.Dang@et.eurofinsus.com

Ask— The Expert

Visit us at: www.eurofinsus.com/Env

.....LINKS

Review your project results through

EOL

Have a Question?

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

5

7

10

12

13

14

Laboratory Job ID: 570-95147-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	20
QC Sample Results	22
QC Association Summary	39
Lab Chronicle	43
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	50

11

13

14

Definitions/Glossary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Qualifiers

GC/MS VOA

Qualifier

*+ LCS and/or LCSD is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

H3 Sample was received and analyzed past holding time.

GC/MS Semi VOA

*- LCS and/or LCSD is outside acceptance limits, low biased.

H Sample was prepped or analyzed beyond the specified holding time

H3 Sample was received and analyzed past holding time.

GC Semi VOA

*+ LCS and/or LCSD is outside acceptance limits, high biased.

*1 LCS/LCSD RPD exceeds control limits.

H Sample was prepped or analyzed beyond the specified holding time

H3 Sample was received and analyzed past holding time.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

Metals

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

Definitions/Glossary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Glossary (Continued)

Too Numerous To Count

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEO	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Job ID: 570-95147-1

Job ID: 570-95147-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-95147-1

Comments

No additional comments.

Receipt

The sample was received on 5/6/2022 10:15 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.9° C.

GC/MS VOA

Method 8260B: The laboratory control sample (LCS) for preparation batch 570-234601 and analytical batch 570-234588 recovered outside control limits for the following analyte: 2-Hexanone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

Method 8260B: The following sample was requested outside of holding time: 202205050002 (570-95147-1).

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-234601 and analytical batch 570-234588 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260B: The matrix spike and duplicate (MS/MSD) associated with parent sample (570-95147-C-1-C MS) and (570-95147-C-1-D MSD) were analyzed outside of the 12-hour tune window. The associated laboratory control sample and duplicate (LCS/LCSD) were analyzed within the 12-hour tune window. LCS/LCSD precision and accuracy met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270C: The following analyte(s) recovered outside control limits for the LCSD associated with preparation batch 570-233796 and analytical batch 570-235117: Benzidine. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method 8270C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-233796 and analytical batch 570-235117 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8270C: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

Method 8270C SIM: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B: The following sample was received outside of holding time: 202205050002 (570-95147-1).

Method 8081A: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

Method 8081A: The continuing calibration verification (CCV) associated with 570-234290 recovered high and outside the control limits for 4,4'-DDE on one column. Results are confirmed on both columns and reported from the passing column. The associated sample is: 202205050002 (570-95147-1).

Method 8081A: The following samples were diluted due to abundance of non-target analytes: (570-95533-A-61-B MS) and (570-95533-A-61-C MSD). Because of this dilution, the matrix spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

5

6

7

10

12

13

Case Narrative

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Job ID: 570-95147-1

Job ID: 570-95147-1 (Continued)

Laboratory: Eurofins Calscience (Continued)

Method 8081A: The closing continuing calibration verification (CCV) associated with batch 570-234290 recovered above the upper control limit for 4,4'-DDD, 4,4'-DDE and 4,4'-DDT. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: 202205050002 (570-95147-1).

Method 8082: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

Method 8151A: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 570-234174 and analytical batch 570-235557 recovered outside control limits for the following analytes: 2,4,5-T, 2,4-DB, Dichlorprop, Dinoseb, MCPA, MCPP and 2,4,5-TP

Method 8151A: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 570-234174 and analytical batch 570-235557 recovered outside control limits for the following analytes: 2,4,5-T and 2,4-DB. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of Selenium for preparation batch 570-233806 and analytical batch 570-235048 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of Silver, Arsenic, Cadmium, Copper, Molybdenum, Lead, Antimony, Thallium and Zinc for preparation batch 570-236024 and analytical batch 570-236320 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 7471A: The following sample was analyzed outside of analytical holding time due to an error in sample queue scheduling: 202205050002 (570-95147-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 1664A: The following sample was prepared outside of preparation holding time per change order: 202205050002 (570-95147-1).

Method 8151A: The following sample was received outside of holding time: 202205050002 (570-95147-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

_

7

0

10

11

13

14

Detection Summary

RL

4.8

24

2.96

2.96

0.493

0.493

0.985

0.985

1.97

1.97

1.97

1.97

0.985

4.93

49.8

49.8

0.0801

MDL Unit

3.7 mg/Kg

11 mg/Kg

1.37 mg/Kg

0.140 mg/Kg

0.0680 mg/Kg

0.0818 mg/Kg

0.183 mg/Kg

0.203 mg/Kg

0.944 mg/Kg

0.403 mg/Kg

0.186 mg/Kg

0.357 mg/Kg

0.166 mg/Kg

1.14 mg/Kg

30.0 mg/Kg

13.8 mg/Kg

0.0130 mg/Kg

Client: Eurofins Eaton Analytical

Diesel Range Organics [C10-C28]

TPH as Motor Oil (C17-C44)

Arsenic

Barium

Beryllium

Cadmium

Chromium

Molybdenum

Cobalt

Copper

Lead

Nickel

Zinc

Vanadium

Mercury

HEM: Oil and Grease

HEM-SGT: Oil and Grease

Project/Site: 1002300

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1

Result Qualifier

3.7 J H H3

20 J H H3

6.38

117

0.209 J

16.8

7.11

22.6

6.69

0.320

17.4

35.3

54.1

0.0535 JH

53.1 H

29.9 JH

0.567

Lab	Sa	mpie iD:	5/0-9514/-1
Dil Fac	D	Method	Prep Type
1	_	8015B	Total/NA
1		8015B	Total/NA
5		6010B	Total/NA

6010B

6010B

6010B

6010B

7471A

1664A

1664A

5

5

5

5

1

1

Job ID: 570-95147-1

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

6

7

9

10

46

13

14

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	H H3	0.98	0.29	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1,1-Trichloroethane	ND	H H3	0.98	0.23	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1,2,2-Tetrachloroethane	ND	H H3	2.0	0.54	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	H H3	9.8	0.46	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1,2-Trichloroethane	ND	H H3	0.98	0.46	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1-Dichloroethane	ND	H H3	0.98	0.28	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1-Dichloroethene	ND	H H3	0.98	0.26	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,1-Dichloropropene	ND	H H3	2.0	0.38	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2,3-Trichlorobenzene	ND	H H3	2.0	0.98	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2,3-Trichloropropane	ND	H H3	2.0	0.41	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2,4-Trichlorobenzene	ND	H H3	2.0	0.40	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2,4-Trimethylbenzene	ND	H H3	2.0	0.59	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2-Dibromo-3-Chloropropane	ND	H H3	9.8	6.7	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2-Dibromoethane	ND	H H3	0.98	0.20	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2-Dichlorobenzene	ND	H H3	0.98	0.25	ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2-Dichloroethane	ND	H H3	0.98		ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,2-Dichloropropane	ND	H H3	0.98		ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,3,5-Trimethylbenzene	ND	H H3	2.0		ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,3-Dichlorobenzene	ND	H H3	0.98		ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,3-Dichloropropane	ND	H H3	0.98		ug/Kg		05/17/22 01:41	05/17/22 03:10	
1,4-Dichlorobenzene	ND	н нз	0.98		ug/Kg		05/17/22 01:41	05/17/22 03:10	
2,2-Dichloropropane	ND	H H3	4.9		ug/Kg		05/17/22 01:41	05/17/22 03:10	
2-Butanone	ND	H H3	20		ug/Kg			05/17/22 03:10	
2-Chlorotoluene		H H3	0.98		ug/Kg			05/17/22 03:10	
2-Hexanone		H H3 *+	20		ug/Kg			05/17/22 03:10	
4-Chlorotoluene		H H3	0.98		ug/Kg			05/17/22 03:10	
4-Methyl-2-pentanone		H H3	20		ug/Kg			05/17/22 03:10	
Acetone		H H3 F1	20		ug/Kg			05/17/22 03:10	
Benzene		H H3	0.98		ug/Kg			05/17/22 03:10	
Bromobenzene		H H3	0.98		ug/Kg			05/17/22 03:10	
Bromochloromethane		H H3	2.0		ug/Kg			05/17/22 03:10	
Bromodichloromethane		H H3	0.98		ug/Kg			05/17/22 03:10	
Bromoform		H H3	4.9		ug/Kg			05/17/22 03:10	
Bromomethane		H H3	20		ug/Kg			05/17/22 03:10	
cis-1,2-Dichloroethene		H H3	0.98		ug/Kg			05/17/22 03:10	
cis-1,3-Dichloropropene		H H3	0.98		ug/Kg			05/17/22 03:10	
Carbon disulfide		H H3	9.8		ug/Kg			05/17/22 03:10	
Carbon tetrachloride		H H3	0.98		ug/Kg			05/17/22 03:10	
Chlorobenzene		H H3	0.98		ug/Kg			05/17/22 03:10	
Chloroethane		H H3	2.0		ug/Kg			05/17/22 03:10	
Chloroform		H H3	0.98		ug/Kg			05/17/22 03:10	
Chloromethane		H H3	20		ug/Kg			05/17/22 03:10	
Dibromochloromethane		H H3	2.0		ug/Kg			05/17/22 03:10	
Dibromomethane		H H3	0.98		ug/Kg ug/Kg			05/17/22 03:10	
Dichlorodifluoromethane		H H3	2.0		ug/Kg ug/Kg			05/17/22 03:10	
Di-isopropyl ether (DIPE)		H H3	0.98		ug/Kg			05/17/22 03:10	
Ethanol		н нз Н Н3	250		ug/Kg ug/Kg			05/17/22 03:10	
Ethylbenzene		н нз Н Н3	0.98					05/17/22 03:10	
Ethyl-t-butyl ether (ETBE)		п пэ Н Н3	0.98		ug/Kg ug/Kg			05/17/22 03:10	

Page 8 of 50

Eurofins Calscience

3

4

G

9

11

13

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Date Received: 05/06/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND	H H3	0.98	0.27	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Methylene Chloride	ND	H H3	9.8	3.1	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Methyl-t-Butyl Ether (MTBE)	ND	H H3	2.0	0.18	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Naphthalene	ND	H H3	9.8	5.1	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
n-Butylbenzene	ND	H H3	0.98	0.21	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
N-Propylbenzene	ND	H H3	2.0	0.26	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
o-Xylene	ND	H H3	0.98	0.25	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
m,p-Xylene	ND	H H3	2.0	0.47	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
p-Isopropyltoluene	ND	H H3	0.98	0.28	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
sec-Butylbenzene	ND	H H3	0.98	0.27	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Styrene	ND	H H3	0.98	0.31	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
trans-1,2-Dichloroethene	ND	H H3	0.98	0.30	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
trans-1,3-Dichloropropene	ND	H H3	2.0	0.28	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Tert-amyl-methyl ether (TAME)	ND	H H3	0.98	0.19	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
tert-Butyl alcohol (TBA)	ND	H H3	20	6.9	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
tert-Butylbenzene	ND	H H3	0.98	0.25	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Tetrachloroethene	ND	H H3	0.98	0.22	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Toluene	ND	H H3	0.98	0.26	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Trichloroethene	ND	H H3	2.0	0.38	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Trichlorofluoromethane	ND	H H3	9.8	0.27	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Vinyl acetate	ND	H H3 F1	9.8	3.9	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Vinyl chloride	ND	H H3	0.98	0.37	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Xylenes, Total	ND	H H3	2.0	0.59	ug/Kg		05/17/22 01:41	05/17/22 03:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		64 - 141	05/17/22 01:41	05/17/22 03:10	1
4-Bromofluorobenzene (Surr)	97		76 - 120	05/17/22 01:41	05/17/22 03:10	1
Dibromofluoromethane (Surr)	98		47 - 142	05/17/22 01:41	05/17/22 03:10	1
Toluene-d8 (Surr)	100		80 - 120	05/17/22 01:41	05/17/22 03:10	1

5

6

8

10

12

11

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C SIM - PAHs (GC/MS SIM)

p-Terphenyl-d14 (Surr)

Client Sample ID: 20220505000 Date Collected: 04/12/22 11:50			Lab San	nple ID: 570-9 Matrix	5147-1 c: Solid				
Date Received: 05/06/22 10:15									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
2-Methylnaphthalene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Acenaphthene	ND	H H3	0.020	0.013	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Acenaphthylene	ND	H H3	0.020	0.0097	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Anthracene	ND	H H3	0.020	0.0089	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Benzo[g,h,i]perylene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Benzo[k]fluoranthene	ND	H H3	0.020	0.0075	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Benzo[a]anthracene	ND	H H3	0.020	0.0080	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Benzo[a]pyrene	ND	H H3	0.020	0.0082	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Benzo[b]fluoranthene	ND	H H3	0.020	0.015	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Chrysene	ND	H H3	0.020	0.0065	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Dibenz(a,h)anthracene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Fluoranthene	ND	H H3	0.020	0.0080	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Fluorene	ND	H H3	0.020	0.0097	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Indeno[1,2,3-cd]pyrene	ND	H H3	0.020	0.012	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Naphthalene	ND	H H3	0.020	0.0090	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Phenanthrene	ND	H H3	0.020	0.015	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Pyrene	ND	Н НЗ	0.020	0.0087	mg/Kg		05/25/22 08:49	05/26/22 20:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	55		22 - 130				05/25/22 08:49	05/26/22 20:46	1
Nitrobenzene-d5 (Surr)	52		20 - 145				05/25/22 08:49	05/26/22 20:46	1

33 - 147

58

4

0

8

10

11

13

14

15

05/25/22 08:49 05/26/22 20:46

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1 Date Collected: 04/12/22 11:50 **Matrix: Solid**

Analyte	Result	Qualifier	RL _	MDL		_ D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND	H H3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	•
Acenaphthylene	ND	H H3	0.50	0.096	mg/Kg			05/18/22 15:30	•
Aniline	ND	H H3	0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Anthracene	ND	H H3	0.50	0.051	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Azobenzene	ND	H H3	0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzidine	ND	H H3 *-	5.0	1.4	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzo[a]anthracene	ND	H H3	0.50	0.046	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzo[a]pyrene	ND	H H3	0.50	0.077	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzo[b]fluoranthene	ND	H H3	0.50	0.080	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzo[g,h,i]perylene	ND	H H3	0.50	0.084	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzoic acid	ND	H H3	2.5	1.6	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzo[k]fluoranthene	ND	H H3	0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Benzyl alcohol	ND	H H3	0.50	0.085	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Bis(2-chloroethoxy)methane	ND	H H3	0.50	0.062	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Bis(2-chloroethyl)ether	ND	H H3	2.5	0.10	mg/Kg		05/12/22 15:08	05/18/22 15:30	
bis (2-Chloroisopropyl) ether	ND	H H3	0.50	0.060	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Bis(2-ethylhexyl) phthalate	ND	H H3	0.50	0.25	mg/Kg		05/12/22 15:08	05/18/22 15:30	
4-Bromophenyl phenyl ether	ND	H H3	0.50	0.059	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Butyl benzyl phthalate	ND	H H3	0.50	0.22	mg/Kg		05/12/22 15:08	05/18/22 15:30	
4-Chloroaniline	ND	H H3	0.50	0.073	mg/Kg		05/12/22 15:08	05/18/22 15:30	
4-Chloro-3-methylphenol	ND	H H3	0.50	0.084	mg/Kg		05/12/22 15:08	05/18/22 15:30	
2-Chloronaphthalene	ND	H H3	0.50	0.057	mg/Kg		05/12/22 15:08	05/18/22 15:30	
2-Chlorophenol	ND	H H3	0.50	0.099	mg/Kg		05/12/22 15:08	05/18/22 15:30	
4-Chlorophenyl phenyl ether	ND	H H3	0.50	0.070	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Chrysene	ND	H H3	0.50	0.068	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Dibenz(a,h)anthracene	ND	H H3	0.50	0.10	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Dibenzofuran	ND	H H3	0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 15:30	
1,2-Dichlorobenzene	ND	H H3	0.50	0.074	mg/Kg		05/12/22 15:08	05/18/22 15:30	
1,3-Dichlorobenzene	ND	H H3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	
1,4-Dichlorobenzene	ND	H H3	0.50	0.071	mg/Kg		05/12/22 15:08	05/18/22 15:30	
3,3'-Dichlorobenzidine	ND	H H3	2.5	0.82	mg/Kg		05/12/22 15:08	05/18/22 15:30	
2,4-Dichlorophenol	ND	H H3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	
2,6-Dichlorophenol	ND	H H3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	
Diethyl phthalate	ND	H H3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	
2,4-Dimethylphenol	ND	H H3	0.50	0.045	mg/Kg		05/12/22 15:08	05/18/22 15:30	
Dimethyl phthalate	ND	H H3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	
Di-n-butyl phthalate	ND	Н Н3	0.50		mg/Kg		05/12/22 15:08	05/18/22 15:30	
4,6-Dinitro-2-methylphenol		н нз	2.5		mg/Kg			05/18/22 15:30	
2,4-Dinitrophenol		н нз	2.0		mg/Kg			05/18/22 15:30	
2,4-Dinitrotoluene		Н Н3	0.50		mg/Kg			05/18/22 15:30	
2,6-Dinitrotoluene		H H3	0.50		mg/Kg			05/18/22 15:30	
Di-n-octyl phthalate		H H3	0.50		mg/Kg			05/18/22 15:30	
Fluoranthene		Н Н3	0.50		mg/Kg			05/18/22 15:30	
Fluorene		H H3	0.50		mg/Kg			05/18/22 15:30	
Hexachlorobenzene		H H3	0.50		mg/Kg			05/18/22 15:30	
Hexachloro-1,3-butadiene		H H3	0.50		mg/Kg			05/18/22 15:30	
Hexachlorocyclopentadiene		H H3	1.5		mg/Kg			05/18/22 15:30	
Hexachloroethane		H H3	0.50		mg/Kg			05/18/22 15:30	
Indeno[1,2,3-cd]pyrene		H H3	0.50		mg/Kg			05/18/22 15:30	

Client: Eurofins Eaton Analytical Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 202205050002	Lab Sample ID: 570-95147-1
Date Collected: 04/12/22 11:50	Matrix: Solid
Data Pagaiyad: 05/06/22 10:15	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isophorone	ND	H H3	0.50	0.069	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
1-Methylnaphthalene	ND	H H3	0.50	0.036	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Methylnaphthalene	ND	H H3	0.50	0.057	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Methylphenol	ND	H H3	0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
3 & 4 Methylphenol	ND	H H3	1.0	0.22	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Naphthalene	ND	H H3	0.50	0.058	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Nitroaniline	ND	H H3	0.50	0.065	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
3-Nitroaniline	ND	H H3	0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
4-Nitroaniline	ND	H H3	0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Nitrobenzene	ND	H H3	2.0	0.092	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Nitrophenol	ND	H H3	0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
4-Nitrophenol	ND	H H3	0.50	0.17	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
N-Nitrosodimethylamine	ND	H H3	0.50	0.077	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
N-Nitrosodi-n-propylamine	ND	H H3	0.50	0.067	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
N-Nitrosodiphenylamine	ND	H H3	0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Pentachlorophenol	ND	H H3	2.5	1.0	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Phenanthrene	ND	H H3	0.50	0.061	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Phenol	ND	H H3	0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Pyrene	ND	H H3	0.50	0.075	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Pyridine	ND	H H3	0.50	0.082	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
1,2,4-Trichlorobenzene	ND	H H3	0.50	0.089	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2,4,5-Trichlorophenol	ND	H H3	0.50	0.070	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2,4,6-Trichlorophenol	ND	H H3	0.50	0.078	mg/Kg		05/12/22 15:08	05/18/22 15:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	72	14 - 142	05/12/22 15:08	05/18/22 15:30	1
2-Fluorophenol (Surr)	68	10 - 123	05/12/22 15:08	05/18/22 15:30	1
Nitrobenzene-d5 (Surr)	72	10 - 129	05/12/22 15:08	05/18/22 15:30	1
Phenol-d6 (Surr)	70	10 - 120	05/12/22 15:08	05/18/22 15:30	1
p-Terphenyl-d14 (Surr)	81	31 - 139	05/12/22 15:08	05/18/22 15:30	1
2,4,6-Tribromophenol (Surr)	64	10 - 134	05/12/22 15:08	05/18/22 15:30	1

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: 2022050500 Date Collected: 04/12/22 11:50 Date Received: 05/06/22 10:15							Lab San	5147-1 :: Solid	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	3.7	J H H3	4.8	3.7	mg/Kg		05/12/22 13:37	05/14/22 03:26	1
TPH as Motor Oil (C17-C44)	20	J H H3	24	11	mg/Kg		05/12/22 13:37	05/14/22 03:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	110		60 - 138				05/12/22 13:37	05/14/22 03:26	1

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8081A - Organochlorine Pesticides (GC)

Surrogate

DCB Decachlorobiphenyl (Surr)

Tetrachloro-m-xylene

Client Sample ID: 202205050002 Date Collected: 04/12/22 11:50 Date Received: 05/06/22 10:15							Lab San	nple ID: 570-9 Matrix	05147-1 c: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	H H3	5.0	0.71	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
4,4'-DDE	ND	H H3	5.0	0.68	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
4,4'-DDT	ND	H H3	5.0	1.2	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Aldrin	ND	H H3	5.0	1.6	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
alpha-BHC	ND	H H3	5.0	0.59	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
alpha-Chlordane	ND	H H3	5.0	0.56	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
beta-BHC	ND	H H3	5.0	0.90	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Chlordane	ND	H H3	25	4.1	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
delta-BHC	ND	H H3	5.0	0.93	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Dieldrin	ND	H H3	5.0	0.55	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endosulfan I	ND	H H3	5.0	1.1	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endosulfan II	ND	H H3	5.0	0.54	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endosulfan sulfate	ND	H H3	5.0	0.63	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endrin	ND	H H3	5.0	0.67	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endrin aldehyde	ND	H H3	5.0	3.3	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endrin ketone	ND	H H3	5.0	0.90	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
gamma-BHC	ND	H H3	5.0	0.51	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
gamma-Chlordane	ND	H H3	5.0	3.4	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Heptachlor	ND	H H3	5.0	0.60	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Heptachlor epoxide	ND	H H3	5.0	0.54	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Methoxychlor	ND	H H3	5.0	1.2	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Toxaphene	ND	н нз	25	15	ug/Kg		05/12/22 15:30	05/16/22 08:17	1

Limits

37 - 151

38 - 148

%Recovery Qualifier

80

75

05/12/22 15:30 05/16/22 08:17

05/12/22 15:30 05/16/22 08:17

Analyzed

Dil Fac

Prepared

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Sample ID: 202205050002
Date Collected: 04/12/22 11:50
Date Descined, 05/00/00 40:45

Lab Sample	ID: 570-95147-1
	Matrix: Solid

_								
~	Ovalifian	DI	MDI	l lmi4	_	Duamanad	Amalumad	Dil Faa
Result	Qualifier	KL	MIDL	Unit	ບ	Prepared	Analyzed	Dil Fac
ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
ND	Н НЗ	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
78		20 - 155				05/12/22 15:32	05/16/22 13:23	1
61		25 - 126				05/12/22 15:32	05/16/22 13:23	1
	ND N	Result Qualifier ND H H3 WRecovery Qualifier 78	Result Qualifier RL ND H H3 50 WRecovery Qualifier Limits 78 20 - 155	Result Qualifier RL MDL ND H H3 50 39 ND H H3 50 25 ND H H3 50 39 **Recovery Qualifier Limits 78 20 - 155	Result Qualifier RL MDL Unit ND H H3 50 39 ug/Kg ND H H3 50 25 ug/Kg ND H H3 50 39 ug/Kg WRecovery Qualifier Limits 78 20 - 155	Result Qualifier RL MDL Unit D ND H H3 50 39 ug/Kg Ug/Kg ND ND	Result Qualifier RL MDL Unit D Prepared ND H H3 50 39 ug/Kg 05/12/22 15:32 ND H H3 50 25 ug/Kg 05/12/22 15:32 ND H H3 50 39 ug/Kg 05/12/22 15:32 ND H H3 50 39 ug/Kg 05/12/22 15:32 ND H H3 50 39 ug/Kg 05/12/22 15:32 %Recovery Qualifier </td <td>Result Qualifier RL MDL Unit D Prepared Analyzed ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32</td>	Result Qualifier RL MDL Unit D Prepared Analyzed ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 25 ug/Kg 05/12/22 15:32 05/16/22 13:23 ND H H3 50 39 ug/Kg 05/12/22 15:32

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8151A - Herbicides (GC)

Client Sample ID: 20220505 Date Collected: 04/12/22 11 Date Received: 05/06/22 10	:50						Lab San	nple ID: 570-9 Matrix	5147-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND	H H3 *+	9.9	3.7	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
2,4,5-TP (Silvex)	ND	H H3 *1	9.9	7.5	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
2,4-D	ND	H H3	99	48	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
2,4-DB	ND	H H3 *+ *1	99	99	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dalapon	ND	H H3	250	72	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dicamba	ND	H H3	9.9	4.7	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dichlorprop	ND	H H3 *1	99	49	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dinoseb	ND	H H3 *1	99	58	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
MCPA	ND	H H3 *1	9900	4800	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
MCPP	ND	H H3 *1	9900	6600	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	112		20 - 163				05/17/22 15:21	05/19/22 23:30	1

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

54.1

Method: 6010B - Metals (ICP)

Zinc

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1

Date Collected: 04/12/22 11:50 Matrix: Solid

Date Received: 05/06/22 10:15

Date Received: 05/06/22	2 10:15								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		9.85	8.57	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Arsenic	6.38		2.96	1.37	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Barium	117		2.96	0.140	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Beryllium	0.567		0.493	0.0680	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Cadmium	0.209	J	0.493	0.0818	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Chromium	16.8		0.985	0.183	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Cobalt	7.11		0.985	0.203	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Copper	22.6		1.97	0.944	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Lead	6.69		1.97	0.403	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Molybdenum	0.320	J	1.97	0.186	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Nickel	17.4		1.97	0.357	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Selenium	ND		3.08	1.25	mg/Kg		05/12/22 15:27	05/18/22 05:50	5
Silver	ND		1.48	0.142	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Thallium	ND		9.85	6.95	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Vanadium	35.3		0.985	0.166	mg/Kg		05/21/22 12:45	05/23/22 14:59	5

4.93

1.14 mg/Kg

05/21/22 12:45 05/23/22 14:59

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 7471A - Mercury (CVAA)

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1 Date Collected: 04/12/22 11:50

Matrix: Solid

6

Date Received: 05/06/22 10:15

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.0535 J H 0.0801 0.0130 mg/Kg 05/12/22 16:44 05/13/22 15:19

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

General Chemistry

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1 Date Collected: 04/12/22 11:50

Matrix: Solid

Date Received: 05/06/22 10:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM: Oil and Grease	53.1 H	49.8	30.0	mg/Kg		05/13/22 11:53	05/13/22 11:53	1
HEM-SGT: Oil and Grease	29.9 J H	49.8	13.8	ma/Ka		05/13/22 11:53	05/13/22 11:53	1

Project/Site: 1002300

Client: Eurofins Eaton Analytical

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(64-141)	(76-120)	(47-142)	(80-120)
570-95147-1	202205050002	92	97	98	100
570-95147-1 MS	202205050002	92	95	95	96
570-95147-1 MSD	202205050002	94	97	99	96
LCS 570-234601/1-A	Lab Control Sample	87	97	95	94
LCSD 570-234601/2-A	Lab Control Sample Dup	80	96	92	95
MB 570-234601/3-A	Method Blank	85	95	94	100
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_			Pe	ercent Surro	ogate Reco	very (Accep	otance Lim
		FBP	2FP	NBZ	PHL6	TPHd14	TBP
Lab Sample ID	Client Sample ID	(14-142)	(10-123)	(10-129)	(10-120)	(31-139)	(10-134)
570-95147-1	202205050002	72	68	72	70	81	64
LCS 570-233796/2-A	Lab Control Sample	77	74	67	76	87	79
LCSD 570-233796/3-A	Lab Control Sample Dup	76	75	65	76	84	78
MB 570-233796/1-A	Method Blank	82	82	79	80	92	80

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL6 = Phenol-d6 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Method: 8270C SIM - PAHs (GC/MS SIM)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	gate Recovery (Acceptance Limits)
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(22-130)	(20-145)	(33-147)	
570-95147-1	202205050002	55	52	58	
LCS 570-236468/2-A	Lab Control Sample	77	78	81	
LCSD 570-236468/3-A	Lab Control Sample Dup	75	74	74	
MB 570-236468/1-A	Method Blank	73	70	81	

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
570-95147-1	202205050002	110	
LCS 570-233769/2-A	Lab Control Sample	112	
LCS 570-233769/6-A	Lab Control Sample	113	
LCSD 570-233769/3-A	Lab Control Sample Dup	111	
LCSD 570-233769/7-A	Lab Control Sample Dup	109	
MB 570-233769/1-A	Method Blank	109	
Surrogate Legend			
OTCSN = n-Octacosan	ie (Surr)		

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)					
		DCB1	TCX1					
Lab Sample ID	Client Sample ID	(37-151)	(38-148)					
570-95147-1	202205050002	80	75					
LCS 570-233622/2-A	Lab Control Sample	96	96					
LCSD 570-233622/3-A	Lab Control Sample Dup	99	98					
MB 570-233622/1-A	Method Blank	95	93					
Surrogate Legend								

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)				
		DCB1	TCX1				
Lab Sample ID	Client Sample ID	(20-155)	(25-126)				
570-95147-1	202205050002	78	61				
LCS 570-233724/2-A	Lab Control Sample	88	74				
LCSD 570-233724/3-A	Lab Control Sample Dup	104	86				
MB 570-233724/1-A	Method Blank	100	83				
Surrogate Legend							

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene (Surr)

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
Lab Sample ID	Client Sample ID	(20-163)	
570-95147-1	202205050002	112	
LCS 570-234174/2-A	Lab Control Sample	37	
LCSD 570-234174/3-A	Lab Control Sample Dup	72	
MB 570-234174/1-A	Method Blank	46	
Surrogate Legend			
DCPAA = 2.4-Dichloron	henvlacetic acid		

QC Sample Results

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-234601/3-A

Matrix: Solid

Analysis Batch: 234588

Client Sam	ple ID:	Meth	od Blank
	Prep	Type:	Total/NA

ıep	Type. Total/IVA	
ron	Batch: 234601	Ī
ieh	Datcii. 23400 i	

		Prep Batch: 234601						
D	Prepared	Analyzed	Dil Fac					

1	
1	
1	Ω

Analysis Batch: 234588	MB	МВ						Prep Batch:	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0	0.29	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1,1-Trichloroethane	ND		1.0	0.23	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1,2,2-Tetrachloroethane	ND		2.0	0.54	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	0.46	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1,2-Trichloroethane	ND		1.0	0.46	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1-Dichloroethane	ND		1.0	0.28	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1-Dichloroethene	ND		1.0	0.27	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,1-Dichloropropene	ND		2.0	0.39	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,2,3-Trichlorobenzene	ND		2.0	1.0	ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,2,3-Trichloropropane	ND		2.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,2,4-Trichlorobenzene	ND		2.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,2,4-Trimethylbenzene	ND		2.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	
1,2-Dibromo-3-Chloropropane	ND		10		ug/Kg			05/17/22 02:44	
1,2-Dibromoethane	ND		1.0		ug/Kg			05/17/22 02:44	
1,2-Dichlorobenzene	ND		1.0		ug/Kg			05/17/22 02:44	
1,2-Dichloroethane	ND		1.0		ug/Kg			05/17/22 02:44	
1,2-Dichloropropane	ND		1.0		ug/Kg			05/17/22 02:44	
1,3,5-Trimethylbenzene	ND		2.0		ug/Kg			05/17/22 02:44	
1,3-Dichlorobenzene	ND		1.0		ug/Kg			05/17/22 02:44	
1,3-Dichloropropane	ND		1.0		ug/Kg			05/17/22 02:44	
1,4-Dichlorobenzene	ND		1.0		ug/Kg			05/17/22 02:44	
2,2-Dichloropropane	ND		5.0		ug/Kg			05/17/22 02:44	
2-Butanone	ND		20		ug/Kg			05/17/22 02:44	
2-Chlorotoluene	ND ND		1.0		0 0			05/17/22 02:44	
2-Grilloroloiderie 2-Hexanone	ND		20		ug/Kg			05/17/22 02:44	
					ug/Kg				
4-Chlorotoluene	ND		1.0		ug/Kg			05/17/22 02:44	
4-Methyl-2-pentanone	ND		20		ug/Kg			05/17/22 02:44	
Acetone	ND		20		ug/Kg			05/17/22 02:44	
Benzene	ND		1.0		ug/Kg			05/17/22 02:44	
Bromobenzene	ND		1.0		ug/Kg			05/17/22 02:44	
Bromochloromethane	ND		2.0		ug/Kg			05/17/22 02:44	
Bromodichloromethane	ND		1.0		ug/Kg			05/17/22 02:44	
Bromoform	ND		5.0		ug/Kg			05/17/22 02:44	
Bromomethane	ND		20		ug/Kg			05/17/22 02:44	
cis-1,2-Dichloroethene	ND		1.0		ug/Kg			05/17/22 02:44	
cis-1,3-Dichloropropene	ND		1.0		ug/Kg			05/17/22 02:44	
Carbon disulfide	ND		10		ug/Kg			05/17/22 02:44	
Carbon tetrachloride	ND		1.0		ug/Kg			05/17/22 02:44	
Chlorobenzene	ND		1.0		ug/Kg			05/17/22 02:44	
Chloroethane	ND		2.0	0.74	ug/Kg		05/16/22 22:40	05/17/22 02:44	
Chloroform	ND		1.0	0.59	ug/Kg		05/16/22 22:40	05/17/22 02:44	
Chloromethane	ND		20		ug/Kg			05/17/22 02:44	
Dibromochloromethane	ND		2.0		ug/Kg			05/17/22 02:44	
Dibromomethane	ND		1.0	0.31	ug/Kg		05/16/22 22:40	05/17/22 02:44	
Dichlorodifluoromethane	ND		2.0	0.45	ug/Kg		05/16/22 22:40	05/17/22 02:44	
Di-isopropyl ether (DIPE)	ND		1.0	0.50	ug/Kg		05/16/22 22:40	05/17/22 02:44	
Ethanol	ND		250	66	ug/Kg		05/16/22 22:40	05/17/22 02:44	
Ethylbenzene	ND		1.0	0.21	ug/Kg		05/16/22 22:40	05/17/22 02:44	

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

100

Lab Sample ID: MB 570-234601/3-A

Matrix: Solid

Isopropylbenzene

Methylene Chloride

Analyte

Analysis Batch: 234588

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 234601

Dil Fac

MB MB Result Qualifier RL MDL Unit Prepared Analyzed ND 1.0 0.24 05/16/22 22:40 05/17/22 02:44 ug/Kg ND 1.0 0.28 ug/Kg 05/16/22 22:40 05/17/22 02:44 ND 10 05/16/22 22:40 05/17/22 02:44 3.1 ug/Kg ND 2.0 0.19 ug/Kg 05/16/22 22:40 05/17/22 02:44

ND 10 05/16/22 22:40 05/17/22 02:44 Naphthalene 5.2 ug/Kg n-Butylbenzene ND 1.0 0.21 ug/Kg 05/16/22 22:40 05/17/22 02:44 N-Propylbenzene ND 2.0 0.26 ug/Kg 05/16/22 22:40 05/17/22 02:44 o-Xylene ND 1.0 0.26 ug/Kg 05/16/22 22:40 05/17/22 02:44

05/16/22 22:40 05/17/22 02:44 m,p-Xylene ND 2.0 0.47 ug/Kg p-Isopropyltoluene 05/16/22 22:40 05/17/22 02:44 ND 1.0 0.28 ug/Kg sec-Butylbenzene ND 1.0 0.27 ug/Kg 05/16/22 22:40 05/17/22 02:44 Styrene ND 0.32 05/16/22 22:40 05/17/22 02:44 1.0 ug/Kg

trans-1,2-Dichloroethene 05/16/22 22:40 05/17/22 02:44 1.0 0.30 ug/Kg trans-1,3-Dichloropropene ND 20 0.28 ug/Kg 05/16/22 22:40 05/17/22 02:44 Tert-amyl-methyl ether (TAME) ND 1.0 0.19 05/16/22 22:40 05/17/22 02:44 ug/Kg ND 20 tert-Butyl alcohol (TBA) 7.0 ug/Kg 05/16/22 22:40 05/17/22 02:44

tert-Butylbenzene ND 1.0 0.25 05/16/22 22:40 05/17/22 02:44 ug/Kg Tetrachloroethene ND 1.0 05/16/22 22:40 05/17/22 02:44 0.22 ug/Kg Toluene ND 1.0 0.27 ug/Kg 05/16/22 22:40 05/17/22 02:44

Trichloroethene ND 2.0 05/16/22 22:40 05/17/22 02:44 0.39 ug/Kg Trichlorofluoromethane ND 10 0.27 ug/Kg 05/16/22 22:40 05/17/22 02:44 Vinvl acetate ND 10 3.9 ug/Kg 05/16/22 22:40 05/17/22 02:44

05/16/22 22:40 05/17/22 02:44 Vinyl chloride ND 1.0 0.38 ug/Kg Xylenes, Total 05/16/22 22:40 05/17/22 02:44 ND 20 0.60 ug/Kg

MB MB %Recovery Qualifier Limits Dil Fac Prepared Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 64 - 141 05/16/22 22:40 05/17/22 02:44 85 4-Bromofluorobenzene (Surr) 95 76 - 120 05/16/22 22:40 05/17/22 02:44 94 Dibromofluoromethane (Surr) 47 - 142 05/16/22 22:40 05/17/22 02:44

80 - 120

Lab Sample ID: LCS 570-234601/1-A

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 234588

Client Sample ID: Lab Control Sample

05/16/22 22:40 05/17/22 02:44

Prep Type: Total/NA Prep Batch: 234601

LCS LCS Spike %Rec **Analyte** Added Result Qualifier Unit %Rec Limits 1,1-Dichloroethene 49.7 48.79 ug/Kg 98 70 - 131 1,2-Dibromoethane 49.7 57.58 80 - 120 ug/Kg 116 1.2-Dichlorobenzene 49.7 55.34 ug/Kg 111 80 - 120 1,2-Dichloroethane 49.7 49.60 ug/Kg 100 80 - 120Benzene 49.7 53.09 ug/Kg 107 80 - 120 105 Carbon tetrachloride 49.7 52.15 80 - 131 ug/Kg 49.7 53.25 107 Chlorobenzene ug/Kg 80 - 120Di-isopropyl ether (DIPE) 49.7 54.63 110 77 - 130ug/Kg Ethanol 497 447.3 ug/Kg 90 66 - 129 49.7 105 Ethylbenzene 52.01 80 - 120ug/Kg Ethyl-t-butyl ether (ETBE) 49.7 54.27 ug/Kg 109 80 - 13580 - 122 Methyl-t-Butyl Ether (MTBE) 49.7 54.07 ug/Kg 109

Client: Eurofins Eaton Analytical Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-234601/1-A

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: Lab Control Sample

Pre	o Type: Total/NA
Pre	p Batch: 234601
%Re	r

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	49.7	52.41		ug/Kg		105	80 - 120	
m,p-Xylene	99.4	101.9		ug/Kg		102	80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		64 - 141
4-Bromofluorobenzene (Surr)	97		76 - 120
Dibromofluoromethane (Surr)	95		47 - 142
Toluene-d8 (Surr)	94		80 - 120

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 570-234601/2-A **Matrix: Solid**

Analysis Batch: 234588

Prep Type: Total/NA

Prep Batch: 234601

Allalysis Datcii. 234300							i ieb De	aton. Z	וטטדע
-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	50.1	47.64		ug/Kg		95	70 - 131	2	20
1,2-Dibromoethane	50.1	56.37		ug/Kg		113	80 - 120	2	20
1,2-Dichlorobenzene	50.1	54.42		ug/Kg		109	80 - 120	2	20
1,2-Dichloroethane	50.1	46.13		ug/Kg		92	80 - 120	7	20
Benzene	50.1	54.69		ug/Kg		109	80 - 120	3	20
Carbon tetrachloride	50.1	50.32		ug/Kg		100	80 - 131	4	20
Chlorobenzene	50.1	53.62		ug/Kg		107	80 - 120	1	20
Di-isopropyl ether (DIPE)	50.1	52.69		ug/Kg		105	77 - 130	4	20
Ethanol	501	450.1		ug/Kg		90	66 - 129	1	22
Ethylbenzene	50.1	53.16		ug/Kg		106	80 - 120	2	20
Ethyl-t-butyl ether (ETBE)	50.1	52.43		ug/Kg		105	80 - 135	3	20
Methyl-t-Butyl Ether (MTBE)	50.1	50.05		ug/Kg		100	80 - 122	8	20
o-Xylene	50.1	54.89		ug/Kg		110	80 - 120	5	20
m,p-Xylene	100	107.8		ug/Kg		108	80 - 120	6	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		64 - 141
4-Bromofluorobenzene (Surr)	96		76 - 120
Dibromofluoromethane (Surr)	92		47 - 142
Toluene-d8 (Surr)	95		80 - 120

Lab Sample ID: 570-95147-1 MS Client Sample ID: 202205050002 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 234588

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND	H H3	49.6	43.02		ug/Kg		87	60 - 125	
1,2-Dibromoethane	ND	H H3	49.6	44.17		ug/Kg		89	65 - 125	
1,2-Dichlorobenzene	ND	н нз	49.6	34.07		ug/Kg		69	47 - 130	
1,2-Dichloroethane	ND	Н НЗ	49.6	40.90		ug/Kg		82	66 - 127	
Benzene	ND	H H3	49.6	45.01		ug/Kg		91	70 - 125	
Carbon tetrachloride	ND	н нз	49.6	45.35		ug/Kg		91	60 - 130	
Chlorobenzene	ND	Н НЗ	49.6	40.50		ug/Kg		82	65 - 125	
Di-isopropyl ether (DIPE)	ND	H H3	49.6	47.33		ug/Kg		95	62 - 125	

Eurofins Calscience

Prep Batch: 234601

Client: Eurofins Eaton Analytical Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 570-95147-1 MS

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: 202205050002

Prep Type: Total/NA

Prep Batch: 234601

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND	H H3	496	300.9		ug/Kg		61	21 - 168	
Ethylbenzene	ND	H H3	49.6	40.95		ug/Kg		83	64 - 125	
Ethyl-t-butyl ether (ETBE)	ND	H H3	49.6	46.57		ug/Kg		94	61 - 125	
Methyl-t-Butyl Ether (MTBE)	ND	H H3	49.6	45.57		ug/Kg		92	61 - 125	
o-Xylene	ND	H H3	49.6	40.87		ug/Kg		82	59 - 128	
m,p-Xylene	ND	Н НЗ	99.2	81.63		ug/Kg		82	60 - 125	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		64 - 141
4-Bromofluorobenzene (Surr)	95		76 - 120
Dibromofluoromethane (Surr)	95		47 - 142
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: 570-95147-1 MSD Client Sample ID: 202205050002

Analysis Batch: 234588

Prep Batch: 234601

24

Matrix: Solid Prep Type: Total/NA

MSD MSD **RPD** Sample Sample Spike %Rec Result Qualifier Limits Analyte Added Result Qualifier Unit %Rec **RPD** Limit 1,1-Dichloroethene ND HH3 50.5 40.71 ug/Kg 81 60 - 125 6 20 1,2-Dibromoethane ND HH3 50.5 42.17 83 65 - 125 21 ug/Kg 1,2-Dichlorobenzene ND HH3 50.5 33.77 ug/Kg 67 47 - 130 29 1.2-Dichloroethane ND HH3 50.5 40.92 81 66 - 127 20 ug/Kg O Benzene ND HH3 50.5 42.82 ug/Kg 85 70 - 125 20 Carbon tetrachloride ND HH3 50.5 46.28 92 60 - 130 2 20 ug/Kg 76 Chlorobenzene ND H H3 50.5 38.22 ug/Kg 65 - 125 6 22 Di-isopropyl ether (DIPE) ND HH3 50.5 46.58 ug/Kg 92 62 - 125 2 20 Ethanol 505 326.9 65 40 ND HH3 ug/Kg 21 - 168 Ethylbenzene 50.5 37.97 75 64 - 125 22 ND HH3 ug/Kg 50.5 61 - 125 20 Ethyl-t-butyl ether (ETBE) ND HH3 45.84 ug/Kg 91 Methyl-t-Butyl Ether (MTBE) ND HH3 50.5 45.44 ug/Kg 90 61 - 125 20 o-Xylene 50.5 76 ND HH3 38.52 ug/Kg 59 - 128 24

101

76.65

ug/Kg

MSD MSD

MD MD

ND HH3

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		64 - 141
4-Bromofluorobenzene (Surr)	97		76 - 120
Dibromofluoromethane (Surr)	99		47 - 142
Toluene-d8 (Surr)	96		80 - 120

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-233796/1-A

Matrix: Solid

m,p-Xylene

Analysis Batch: 235117

Client Sample ID: Method Blank Prep Type: Total/NA

60 - 125

76

Prep Batch: 233796

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.50	0.054	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Acenaphthylene	ND	0.50	0.096 ı	mg/Kg		05/12/22 15:08	05/18/22 13:54	1

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 570-233796/1-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 233796

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aniline	ND		0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Anthracene	ND		0.50	0.051	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Azobenzene	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzidine	ND		5.0	1.4	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[a]anthracene	ND		0.50	0.046	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[a]pyrene	ND		0.50	0.076	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[b]fluoranthene	ND		0.50	0.080	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[g,h,i]perylene	ND		0.50	0.083	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzoic acid	ND		2.5	1.6	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[k]fluoranthene	ND		0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzyl alcohol	ND		0.50	0.085	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Bis(2-chloroethoxy)methane	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Bis(2-chloroethyl)ether	ND		2.5		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
bis (2-Chloroisopropyl) ether	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Bis(2-ethylhexyl) phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
4-Bromophenyl phenyl ether	ND		0.50		mg/Kg			05/18/22 13:54	1
Butyl benzyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	
4-Chloroaniline	ND		0.50		mg/Kg			05/18/22 13:54	1
4-Chloro-3-methylphenol	ND		0.50		mg/Kg			05/18/22 13:54	1
2-Chloronaphthalene	ND		0.50		mg/Kg			05/18/22 13:54	· · · · · · · · · · · · · · · · · · ·
2-Chlorophenol	ND.		0.50		mg/Kg			05/18/22 13:54	1
•	ND.		0.50					05/18/22 13:54	1
4-Chlorophenyl phenyl ether Chrysene			0.50		mg/Kg				
•	ND ND		0.50		mg/Kg mg/Kg			05/18/22 13:54	1
Dibenz(a,h)anthracene								05/18/22 13:54	•
Dibenzofuran	ND		0.50		mg/Kg			05/18/22 13:54	
1,2-Dichlorobenzene	ND		0.50		mg/Kg			05/18/22 13:54	1
1,3-Dichlorobenzene	ND		0.50		mg/Kg			05/18/22 13:54	1
1,4-Dichlorobenzene	ND		0.50	0.071	mg/Kg			05/18/22 13:54	1
3,3'-Dichlorobenzidine	ND		2.5		mg/Kg			05/18/22 13:54	1
2,4-Dichlorophenol	ND		0.50		mg/Kg			05/18/22 13:54	1
2,6-Dichlorophenol	ND		0.50		mg/Kg			05/18/22 13:54	1
Diethyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
2,4-Dimethylphenol	ND		0.50		mg/Kg			05/18/22 13:54	1
Dimethyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
Di-n-butyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
4,6-Dinitro-2-methylphenol	ND		2.5		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2,4-Dinitrophenol	ND		2.0	1.6	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2,4-Dinitrotoluene	ND		0.50	0.11	mg/Kg			05/18/22 13:54	1
2,6-Dinitrotoluene	ND		0.50	0.059	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Di-n-octyl phthalate	ND		0.50	0.36	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Fluoranthene	ND		0.50	0.058	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Fluorene	ND		0.50	0.067	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Hexachlorobenzene	ND		0.50	0.092	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Hexachloro-1,3-butadiene	ND		0.50	0.050	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Hexachlorocyclopentadiene	ND		1.5	0.38	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Hexachloroethane	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Indeno[1,2,3-cd]pyrene	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Isophorone	ND		0.50		mg/Kg			05/18/22 13:54	1
1-Methylnaphthalene	ND		0.50		mg/Kg			05/18/22 13:54	1

Client: Eurofins Eaton Analytical Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 570-233796/1-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 233796

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.50	0.057	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2-Methylphenol	ND		0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
3 & 4 Methylphenol	ND		1.0	0.22	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Naphthalene	ND		0.50	0.058	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2-Nitroaniline	ND		0.50	0.065	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
3-Nitroaniline	ND		0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
4-Nitroaniline	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Nitrobenzene	ND		2.0	0.092	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2-Nitrophenol	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
4-Nitrophenol	ND		0.50	0.17	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
N-Nitrosodimethylamine	ND		0.50	0.077	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
N-Nitrosodi-n-propylamine	ND		0.50	0.067	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
N-Nitrosodiphenylamine	ND		0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Pentachlorophenol	ND		2.5	1.0	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Phenanthrene	ND		0.50	0.061	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Phenol	ND		0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Pyrene	ND		0.50	0.075	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Pyridine	ND		0.50	0.082	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
1,2,4-Trichlorobenzene	ND		0.50	0.089	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2,4,5-Trichlorophenol	ND		0.50	0.070	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2,4,6-Trichlorophenol	ND		0.50	0.078	mg/Kg		05/12/22 15:08	05/18/22 13:54	1

MB MB

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	82		14 - 142	05/12/22 15:08	05/18/22 13:54	1
2-Fluorophenol (Surr)	82		10 - 123	05/12/22 15:08	05/18/22 13:54	1
Nitrobenzene-d5 (Surr)	79		10 - 129	05/12/22 15:08	05/18/22 13:54	1
Phenol-d6 (Surr)	80		10 - 120	05/12/22 15:08	05/18/22 13:54	1
p-Terphenyl-d14 (Surr)	92		31 - 139	05/12/22 15:08	05/18/22 13:54	1
2,4,6-Tribromophenol (Surr)	80		10 - 134	05/12/22 15:08	05/18/22 13:54	1

Lab Sample ID: LCS 570-233796/2-A

Matrix: Solid

Analysis Batch: 235117

Client Sample	ID:	Lab	Cont	trol	Samp	е
		Prer	Tvp	e: 1	Total/N	Α

Prep Batch: 233796

Analysis Baton. 200111	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	5.00	4.544		mg/Kg		91	71 - 120
Acenaphthylene	5.00	4.977		mg/Kg		100	77 - 125
Butyl benzyl phthalate	5.00	4.614		mg/Kg		92	58 - 120
4-Chloro-3-methylphenol	5.00	3.883		mg/Kg		78	54 - 120
2-Chlorophenol	5.00	4.173		mg/Kg		83	65 - 121
1,4-Dichlorobenzene	5.00	3.870		mg/Kg		77	64 - 120
Dimethyl phthalate	5.00	4.453		mg/Kg		89	58 - 120
2,4-Dinitrotoluene	5.00	4.586		mg/Kg		92	64 - 120
Fluorene	5.00	4.805		mg/Kg		96	72 - 120
Naphthalene	5.00	3.849		mg/Kg		77	60 - 120
4-Nitrophenol	5.00	4.341		mg/Kg		87	52 - 121
N-Nitrosodi-n-propylamine	5.00	4.298		mg/Kg		86	61 - 123
Pentachlorophenol	5.00	2.885		ma/Ka		58	27 - 120

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-233796/2-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 233796

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenol	5.00	4.116		mg/Kg		82	61 - 127	
Pyrene	5.00	4.751		mg/Kg		95	70 - 124	
1,2,4-Trichlorobenzene	5.00	3.614		mg/Kg		72	59 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	77		14 - 142
2-Fluorophenol (Surr)	74		10 - 123
Nitrobenzene-d5 (Surr)	67		10 - 129
Phenol-d6 (Surr)	76		10 - 120
p-Terphenyl-d14 (Surr)	87		31 - 139
2,4,6-Tribromophenol (Surr)	79		10 - 134

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Lab Sample ID: LCSD 570-233796/3-A

Prep Type: Total/NA

analysis Batch: 235117							Prep Ba	itch: 23	33796
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	5.00	4.583		mg/Kg		92	71 - 120	1	20
Acenaphthylene	5.00	4.974		mg/Kg		99	77 - 125	0	20
Butyl benzyl phthalate	5.00	4.469		mg/Kg		89	58 - 120	3	20
4-Chloro-3-methylphenol	5.00	3.768		mg/Kg		75	54 - 120	3	20
2-Chlorophenol	5.00	4.151		mg/Kg		83	65 - 121	1	20
1,4-Dichlorobenzene	5.00	3.844		mg/Kg		77	64 - 120	1	20
Dimethyl phthalate	5.00	4.392		mg/Kg		88	58 - 120	1	20
2,4-Dinitrotoluene	5.00	4.567		mg/Kg		91	64 - 120	0	20
Fluorene	5.00	4.770		mg/Kg		95	72 - 120	1	20
Naphthalene	5.00	3.732		mg/Kg		75	60 - 120	3	20
4-Nitrophenol	5.00	4.389		mg/Kg		88	52 - 121	1	20
N-Nitrosodi-n-propylamine	5.00	4.376		mg/Kg		88	61 - 123	2	20
Pentachlorophenol	5.00	2.919		mg/Kg		58	27 - 120	1	20
Phenol	5.00	4.210		mg/Kg		84	61 - 127	2	20
Pyrene	5.00	4.552		mg/Kg		91	70 - 124	4	20
1,2,4-Trichlorobenzene	5.00	3.545		mg/Kg		71	59 - 120	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	76		14 - 142
2-Fluorophenol (Surr)	75		10 - 123
Nitrobenzene-d5 (Surr)	65		10 - 129
Phenol-d6 (Surr)	76		10 - 120
p-Terphenyl-d14 (Surr)	84		31 - 139
2,4,6-Tribromophenol (Surr)	78		10 - 134

Job ID: 570-95147-1 Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8270C SIM - PAHs (GC/MS SIM)

Lab Sample ID: MB 570-236468/1-A **Matrix: Solid**

Analysis Batch: 237436

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 236468

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.020	0.011	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
2-Methylnaphthalene	ND		0.020	0.010	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Acenaphthene	ND		0.020	0.013	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Acenaphthylene	ND		0.020	0.0096	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Anthracene	ND		0.020	0.0089	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[g,h,i]perylene	ND		0.020	0.011	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[k]fluoranthene	ND		0.020	0.0075	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[a]anthracene	ND		0.020	0.0080	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[a]pyrene	ND		0.020	0.0082	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[b]fluoranthene	ND		0.020	0.015	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Chrysene	ND		0.020	0.0065	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Dibenz(a,h)anthracene	ND		0.020	0.011	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Fluoranthene	ND		0.020	0.0080	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Fluorene	ND		0.020	0.0097	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.012	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Naphthalene	ND		0.020	0.0089	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Phenanthrene	ND		0.020	0.015	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Pyrene	ND		0.020	0.0087	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
-									

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	73		22 - 130	05/24/22 09:06	05/27/22 10:14	1
Nitrobenzene-d5 (Surr)	70		20 - 145	05/24/22 09:06	05/27/22 10:14	1
p-Terphenyl-d14 (Surr)	81		33 - 147	05/24/22 09:06	05/27/22 10:14	1

Lab Sample ID: LCS 570-236468/2-A

Matrix: Solid

Analysis Batch: 237436

Client	San	nple	ID:	Lab	Conti	rol	Sampl	е
--------	-----	------	-----	-----	-------	-----	-------	---

Prep Type: Total/NA

Prep Batch: 236468

Analysis Batch: 237436	Spike	LCS LCS				%Rec
Analyte	Added	Result Qualifie	r Unit	D	%Rec	Limits
1-Methylnaphthalene	0.200	0.1868	mg/Kg		93	54 - 132
2-Methylnaphthalene	0.200	0.1770	mg/Kg		89	50 - 127
Acenaphthene	0.200	0.1665	mg/Kg		83	53 - 125
Acenaphthylene	0.200	0.1955	mg/Kg		98	50 - 123
Anthracene	0.200	0.1791	mg/Kg		90	50 - 132
Benzo[g,h,i]perylene	0.200	0.1680	mg/Kg		84	50 - 130
Benzo[k]fluoranthene	0.200	0.1698	mg/Kg		85	49 - 150
Benzo[a]anthracene	0.200	0.1894	mg/Kg		95	50 - 133
Benzo[a]pyrene	0.200	0.1622	mg/Kg		81	50 - 134
Benzo[b]fluoranthene	0.200	0.1697	mg/Kg		85	50 - 142
Chrysene	0.200	0.1784	mg/Kg		89	51 - 129
Dibenz(a,h)anthracene	0.200	0.1682	mg/Kg		84	50 - 133
Fluoranthene	0.200	0.1761	mg/Kg		88	55 - 127
Fluorene	0.200	0.1760	mg/Kg		88	55 - 127
Indeno[1,2,3-cd]pyrene	0.200	0.1603	mg/Kg		80	50 - 148
Naphthalene	0.200	0.1723	mg/Kg		86	51 - 129
Phenanthrene	0.200	0.1702	mg/Kg		85	50 - 122
Pyrene	0.200	0.1897	mg/Kg		95	50 - 134

Project/Site: 1002300

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Lab Sample ID: LCS 570-236468/2-A

Matrix: Solid

Analysis Batch: 237436

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 236468

LCS LCS

Surrogate	%Recovery Qualifier	r Limits
2-Fluorobiphenyl (Surr)	77	22 - 130
Nitrobenzene-d5 (Surr)	78	20 - 145
p-Terphenyl-d14 (Surr)	81	33 - 147

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 236468

Lab Sample ID: LCSD 570-236468/3-A **Matrix: Solid**

Analysis Batch: 237436

Analysis Batch: 23/436					Prep Ba	aten: 23	30408
	Spike	LCSD LCSD			%Rec		RPD
Analyte	Added	Result Qualifi	er Unit	D %Rec	Limits	RPD	Limit
1-Methylnaphthalene	0.200	0.1824	mg/Kg	91	54 - 132	2	20
2-Methylnaphthalene	0.200	0.1751	mg/Kg	88	50 - 127	1	20
Acenaphthene	0.200	0.1694	mg/Kg	85	53 - 125	2	20
Acenaphthylene	0.200	0.1936	mg/Kg	97	50 - 123	1	20
Anthracene	0.200	0.1820	mg/Kg	91	50 - 132	2	20
Benzo[g,h,i]perylene	0.200	0.1938	mg/Kg	97	50 - 130	14	20
Benzo[k]fluoranthene	0.200	0.1856	mg/Kg	93	49 - 150	9	20
Benzo[a]anthracene	0.200	0.1845	mg/Kg	92	50 - 133	3	20
Benzo[a]pyrene	0.200	0.1823	mg/Kg	91	50 - 134	12	20
Benzo[b]fluoranthene	0.200	0.1821	mg/Kg	91	50 - 142	7	20
Chrysene	0.200	0.1809	mg/Kg	90	51 - 129	1	20
Dibenz(a,h)anthracene	0.200	0.1853	mg/Kg	93	50 - 133	10	20
Fluoranthene	0.200	0.1616	mg/Kg	81	55 - 127	9	20
Fluorene	0.200	0.1723	mg/Kg	86	55 - 127	2	20
Indeno[1,2,3-cd]pyrene	0.200	0.1769	mg/Kg	88	50 - 148	10	20
Naphthalene	0.200	0.1814	mg/Kg	91	51 - 129	5	20
Phenanthrene	0.200	0.1750	mg/Kg	87	50 - 122	3	20
Pyrene	0.200	0.1848	mg/Kg	92	50 - 134	3	20

LCSD LCSD

Surrogate	%Recovery Qualifie	r Limits
2-Fluorobiphenyl (Surr)	75	22 - 130
Nitrobenzene-d5 (Surr)	74	20 - 145
p-Terphenyl-d14 (Surr)	74	33 - 147

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sai

Matrix:

Analysi

ample ID: MB 570-233769/1-A	Client Sample ID: Method Blank
: Solid	Prep Type: Total/NA
sis Batch: 234059	Prep Batch: 233769
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		5.0	3.8	mg/Kg		05/12/22 13:37	05/13/22 15:12	1
TPH as Motor Oil (C17-C44)	ND		25	11	mg/Kg		05/12/22 13:37	05/13/22 15:12	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
n-Octacosane (Surr)	109		60 - 138	05/12/22 13:37 05/13/22 15:12	1

Client: Eurofins Eaton Analytical

Analysis Batch: 234059

Project/Site: 1002300

Matrix: Solid

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 233769

%Rec

%Rec Limits

114

80 - 130

Diesel Range Organics [C10-C28]

Surrogate

Analyte

Analyte

LCS LCS

112

%Recovery Qualifier

Limits

Lab Sample ID: LCS 570-233769/6-A

Lab Sample ID: LCS 570-233769/2-A

Matrix: Solid

n-Octacosane (Surr)

Analysis Batch: 234059

TPH as Motor Oil (C17-C44)

60 - 138

Spike

Added

400

LCS LCS

457.0

Result Qualifier

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 233769

%Rec

Spike LCS LCS Added Result Qualifier Unit D %Rec Limits 400 395.6 mg/Kg 99 77 - 125

Unit

mg/Kg

LCS LCS

Limits Surrogate %Recovery Qualifier n-Octacosane (Surr) 113 60 - 138

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 570-233769/3-A **Matrix: Solid**

Analysis Batch: 234059

Prep Type: Total/NA

Prep Batch: 233769

LCSD LCSD %Rec **RPD** Spike Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit 461.9 400 80 - 130 **Diesel Range Organics** 115 20 mg/Kg

[C10-C28]

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 111 60 - 138

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 234059

Prep Type: Total/NA

Prep Batch: 233769 %Rec **RPD**

Spike LCSD LCSD Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec TPH as Motor Oil (C17-C44) 400 77 - 125 390.2 mg/Kg 98 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 109 60 - 138

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 570-233622/1-A

Lab Sample ID: LCSD 570-233769/7-A

Matrix: Solid Analysis Batch: 233627 **Client Sample ID: Method Blank**

Prep Type: Total/NA

Prep Batch: 233622

MB MB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed 4.4'-DDD ND 5.0 0.72 ug/Kg 05/12/22 08:39 05/13/22 09:25 4,4'-DDE ND 5.0 0.69 ug/Kg 05/12/22 08:39 05/13/22 09:25 4,4'-DDT ND 5.0 1.2 ug/Kg 05/12/22 08:39 05/13/22 09:25 ND 05/12/22 08:39 05/13/22 09:25 Aldrin 5.0 1.6 ug/Kg

Job ID: 570-95147-1 Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 570-233622/1-A

Matrix: Solid

Analysis Batch: 233627

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 233622

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	ND		5.0	0.59	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
alpha-Chlordane	ND		5.0	0.56	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
beta-BHC	ND		5.0	0.90	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Chlordane	ND		25	4.1	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
delta-BHC	ND		5.0	0.93	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Dieldrin	ND		5.0	0.55	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Endosulfan I	ND		5.0	1.1	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Endosulfan II	ND		5.0	0.55	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Endosulfan sulfate	ND		5.0	0.63	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Endrin	ND		5.0	0.67	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Endrin aldehyde	ND		5.0	3.3	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Endrin ketone	ND		5.0	0.90	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
gamma-BHC	ND		5.0	0.51	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
gamma-Chlordane	ND		5.0	3.4	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Heptachlor	ND		5.0	0.60	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Heptachlor epoxide	ND		5.0	0.54	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Methoxychlor	ND		5.0	1.2	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Toxaphene	ND		25	15	ug/Kg		05/12/22 08:39	05/13/22 09:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	95		37 - 151	05/12/22 08:39	05/13/22 09:25	1
Tetrachloro-m-xylene	93		38 - 148	05/12/22 08:39	05/13/22 09:25	1

Lab Sample ID: LCS 570-233622/2-A

Matrix: Solid Analysis Batch: 233627							Prep Type: Total/NA Prep Batch: 233622
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	25.0	22.63		ug/Kg		91	54 - 154
4,4'-DDE	25.0	22.55		ug/Kg		90	51 - 149
4,4'-DDT	25.0	21.05		ug/Kg		84	39 - 152
Aldrin	25.0	19.97		ug/Kg		80	52 - 138
alpha-BHC	25.0	22.26		ug/Kg		89	51 - 140
alpha-Chlordane	25.0	20.53		ug/Kg		82	53 - 141
beta-BHC	25.0	21.70		ug/Kg		87	53 - 141
delta-BHC	25.0	23.28		ug/Kg		93	20 - 132
Dieldrin	25.0	20.84		ug/Kg		83	52 - 144
Endosulfan I	25.0	19.97		ug/Kg		80	49 - 139
Endosulfan II	25.0	20.92		ug/Kg		84	51 - 150
Endosulfan sulfate	25.0	20.97		ug/Kg		84	45 - 139
Endrin	25.0	16.78		ug/Kg		67	53 - 151
Endrin aldehyde	25.0	21.21		ug/Kg		85	31 - 146
gamma-BHC	25.0	21.83		ug/Kg		87	53 - 141
gamma-Chlordane	25.0	20.81		ug/Kg		83	46 - 156
Heptachlor	25.0	20.58		ug/Kg		82	52 - 144
Heptachlor epoxide	25.0	21.13		ug/Kg		85	54 - 141
Methoxychlor	25.0	12.55	р	ug/Kg		50	47 - 148

Lab Sample ID: LCSD 570-233622/3-A

Matrix: Solid

Analysis Batch: 233627

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 233622

LCS LCS

%Recovery Qualifier Surrogate Limits DCB Decachlorobiphenyl (Surr) 96 37 - 151 Tetrachloro-m-xylene 96 38 - 148

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 233622

Matrix: Solid

Analysis Batch: 233627

Alialysis Datcii. 200021							Lieb Do	ittii. Z	33022
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	25.0	23.09		ug/Kg		92	54 - 154	2	30
4,4'-DDE	25.0	22.92		ug/Kg		92	51 - 149	2	28
4,4'-DDT	25.0	21.91		ug/Kg		88	39 - 152	4	31
Aldrin	25.0	20.70		ug/Kg		83	52 - 138	4	30
alpha-BHC	25.0	22.69		ug/Kg		91	51 - 140	2	29
alpha-Chlordane	25.0	21.13		ug/Kg		85	53 - 141	3	28
beta-BHC	25.0	22.13		ug/Kg		89	53 - 141	2	29
delta-BHC	25.0	23.79		ug/Kg		95	20 - 132	2	40
Dieldrin	25.0	21.62		ug/Kg		86	52 - 144	4	28
Endosulfan I	25.0	20.74		ug/Kg		83	49 - 139	4	28
Endosulfan II	25.0	21.51		ug/Kg		86	51 - 150	3	29
Endosulfan sulfate	25.0	21.48		ug/Kg		86	45 - 139	2	30
Endrin	25.0	19.33		ug/Kg		77	53 - 151	14	29
Endrin aldehyde	25.0	20.88		ug/Kg		84	31 - 146	2	40
gamma-BHC	25.0	22.24		ug/Kg		89	53 - 141	2	29
gamma-Chlordane	25.0	21.41		ug/Kg		86	46 - 156	3	39
Heptachlor	25.0	21.11		ug/Kg		84	52 - 144	3	29
Heptachlor epoxide	25.0	21.74		ug/Kg		87	54 - 141	3	29
Methoxychlor	25.0	12.91	р	ug/Kg		52	47 - 148	3	29

LCSD LCSD

%Recovery Qualifier Limits Surrogate DCB Decachlorobiphenyl (Surr) 99 37 - 151 Tetrachloro-m-xylene 98 38 - 148

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 570-233724/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 233928

Cheff Cample 15: Method Blank	
Prep Type: Total/NA	
Prep Batch: 233724	

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND		50	39	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1221	ND		50	39	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1232	ND		50	39	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1242	ND		50	39	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1248	ND		50	39	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1254	ND		50	25	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1260	ND		50	25	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1262	ND		50	25	ug/Kg		05/12/22 11:53	05/13/22 21:52	1
Aroclor-1268	ND		50	25	ug/Kg		05/12/22 11:53	05/13/22 21:52	1

Eurofins Calscience

Job ID: 570-95147-1

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 570-233724/1-A

Matrix: Solid

Analysis Batch: 233928

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 233724

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Polychlorinated biphenyls, Total	ND		50	39	ug/Kg		05/12/22 11:53	05/13/22 21:52	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 100 20 - 155 05/12/22 11:53 05/13/22 21:52 Tetrachloro-m-xylene (Surr) 83 25 - 126 05/12/22 11:53 05/13/22 21:52

Lab Sample ID: LCS 570-233724/2-A

Lab Sample ID: LCSD 570-233724/3-A

Matrix: Solid

Analysis Batch: 233928

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Drop Potoby 222724

Prep Batch: 233724

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor-1016	100	87.73		ug/Kg	_	88	50 - 142	
Aroclor-1260	100	92.70		ug/Kg		93	50 - 150	

LCS LCS

Surrogate	7₀Kecovery	Qualifier	LIIIIII
DCB Decachlorobiphenyl (Surr)	88		20 - 155
Tetrachloro-m-xylene (Surr)	74		25 - 126

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 233928

Prep Type: Total/NA Prep Batch: 233724

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor-1016	100	98.24		ug/Kg		98	50 - 142	11	30
Aroclor-1260	100	102.7		ug/Kg		103	50 - 150	10	30

LCSD LCSD

l	Surrogate	%Recovery	Qualifier	Limits
	DCB Decachlorobiphenyl (Surr)	104		20 - 155
l	Tetrachloro-m-xylene (Surr)	86		25 - 126

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 570-234174/1-A

Matrix: Solid

Analysis Batch: 235864

Client Sample ID: Method Blank
Prep Type: Total/NA
Duni Datahi 004474

Prep Batch: 234174

	MB N	ИВ							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND ND		10	3.7	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
2,4,5-TP (Silvex)	ND		10	7.5	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
2,4-D	ND		100	49	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
2,4-DB	ND		100	100	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dalapon	ND		250	72	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dicamba	ND		10	4.7	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dichlorprop	ND		100	49	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dinoseb	ND		100	59	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
MCPA	ND		10000	4900	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
MCPP	ND		10000	6600	ug/Kg		05/17/22 15:21	05/20/22 16:41	1

Job ID: 570-95147-1

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: MB 570-234174/1-A

Matrix: Solid

Analysis Batch: 235864

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 234174

MB MB

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 05/17/22 15:21 05/20/22 16:41 2,4-Dichlorophenylacetic acid 46 20 - 163

Lab Sample ID: LCS 570-234174/2-A

Matrix: Solid

Analysis Batch: 235557

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec

Prep Batch: 234174

Spike LCS LCS Added Result Qualifier Limits **Analyte** Unit D %Rec 2,4,5-T 40.0 55.28 ug/Kg 138 36 - 125 215.7 p 2.4-D 400 ug/Kg 54 10 - 177 400 2,4-DB 925.9 *+ ug/Kg 231 35 - 180

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 20 - 163

Lab Sample ID: LCSD 570-234174/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 235557

Prep Type: Total/NA

Prep Batch: 234174

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 56.31 *+ 2,4,5-T 40.0 141 36 - 125 2 35 ug/Kg 2,4-D 400 319.1 80 39 40 ug/Kg 10 - 177 400 579.2 *1 2,4-DB ug/Kg 145 35 - 180 46 40

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 20 - 163 72

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-233806/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 235048

Prep Type: Total/NA

Prep Batch: 233806

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Selenium $\overline{\mathsf{ND}}$ 2.99 1.22 05/12/22 15:27 05/18/22 04:45 mg/Kg

Lab Sample ID: LCS 570-233806/2-A ^5

Matrix: Solid

Selenium

Analysis Batch: 235048

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 233806

%Rec

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Selenium 49.8 43.58 mg/Kg 88 80 - 120

Lab Sample ID: LCSD 570-233806/3-A ^5

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

80 - 120

85

Prep Type: Total/NA

Analysis Batch: 235048 Prep Batch: 233806 LCSD LCSD %Rec **RPD** Spike Added Limits Analyte Result Qualifier Unit %Rec **RPD** Limit

42.69

mg/Kg

50.5

Eurofins Calscience

Method: 6010B - Metals (ICP) (Continued)

MD MD

Lab Sample ID: MB 570-236024/1-A ^5

Matrix: Solid

Analysis Batch: 236320

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 236024

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		10.1	8.74	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Arsenic	ND		3.02	1.40	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Barium	ND		3.02	0.143	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Beryllium	ND		0.503	0.0693	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Cadmium	ND		0.503	0.0834	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Chromium	ND		1.01	0.187	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Cobalt	ND		1.01	0.207	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Copper	ND		2.01	0.963	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Lead	ND		2.01	0.411	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Molybdenum	ND		2.01	0.190	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Nickel	ND		2.01	0.364	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Silver	ND		1.51	0.145	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Thallium	ND		10.1	7.09	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Vanadium	ND		1.01	0.169	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Zinc	ND		5.03	1.16	mg/Kg		05/21/22 12:45	05/23/22 13:44	5

Lab Sample ID: LCS 570-236024/2-A ^5

Matrix: Solid

Analysis Batch: 236320

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 236024

1

						•
Spike	LCS	LCS				%Rec
Added	Result	Qualifier	Unit	D	%Rec	Limits
49.0	57.29		mg/Kg		117	80 - 120
49.0	45.80		mg/Kg		93	80 - 120
49.0	49.34		mg/Kg		101	80 - 120
49.0	48.33		mg/Kg		99	80 - 120
49.0	46.29		mg/Kg		94	80 - 120
49.0	49.83		mg/Kg		102	80 - 120
49.0	47.99		mg/Kg		98	80 - 120
49.0	49.25		mg/Kg		100	80 - 120
49.0	47.86		mg/Kg		98	80 - 120
49.0	51.61		mg/Kg		105	80 - 120
49.0	48.25		mg/Kg		98	80 - 120
24.5	24.68		mg/Kg		101	80 - 120
49.0	47.67		mg/Kg		97	80 - 120
49.0	49.07		mg/Kg		100	80 - 120
49.0	45.38		mg/Kg		93	80 - 120
	Added 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0	Added Result 49.0 57.29 49.0 45.80 49.0 49.34 49.0 48.33 49.0 49.83 49.0 47.99 49.0 47.86 49.0 51.61 49.0 48.25 24.5 24.68 49.0 47.67 49.0 49.07	Added Result Qualifier 49.0 57.29 49.0 45.80 49.0 49.34 49.0 48.33 49.0 46.29 49.0 47.99 49.0 47.99 49.0 47.86 49.0 51.61 49.0 48.25 24.5 24.68 49.0 47.67 49.0 49.07	Added Result Qualifier Unit 49.0 57.29 mg/Kg 49.0 45.80 mg/Kg 49.0 49.34 mg/Kg 49.0 48.33 mg/Kg 49.0 46.29 mg/Kg 49.0 49.83 mg/Kg 49.0 47.99 mg/Kg 49.0 49.25 mg/Kg 49.0 47.86 mg/Kg 49.0 51.61 mg/Kg 49.0 48.25 mg/Kg 49.0 47.67 mg/Kg 49.0 47.67 mg/Kg 49.0 49.07 mg/Kg	Added Result Qualifier Unit D 49.0 57.29 mg/Kg mg/Kg 49.0 45.80 mg/Kg mg/Kg 49.0 49.34 mg/Kg mg/Kg 49.0 48.33 mg/Kg mg/Kg 49.0 49.83 mg/Kg mg/Kg 49.0 47.99 mg/Kg mg/Kg 49.0 47.86 mg/Kg mg/Kg 49.0 51.61 mg/Kg mg/Kg 49.0 48.25 mg/Kg mg/Kg 49.0 47.67 mg/Kg mg/Kg 49.0 47.67 mg/Kg mg/Kg 49.0 49.07 mg/Kg mg/Kg	Added Result Qualifier Unit D %Rec 49.0 57.29 mg/Kg 117 49.0 45.80 mg/Kg 93 49.0 49.34 mg/Kg 101 49.0 48.33 mg/Kg 99 49.0 46.29 mg/Kg 94 49.0 49.83 mg/Kg 102 49.0 47.99 mg/Kg 98 49.0 49.25 mg/Kg 100 49.0 47.86 mg/Kg 98 49.0 51.61 mg/Kg 98 24.5 24.68 mg/Kg 101 49.0 47.67 mg/Kg 97 49.0 49.07 mg/Kg 100

Lab Sample ID: LCSD 570-236024/3-A ^5

Matrix: Solid

Analysis Batch: 236320

Client Sample	ID: Lab	Control	Sample	Dup

Prep Type: Total/NA

Prep Batch: 236024

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	49.3	56.21		mg/Kg		114	80 - 120	2	20
Arsenic	49.3	46.55		mg/Kg		94	80 - 120	2	20
Barium	49.3	49.57		mg/Kg		101	80 - 120	0	20
Beryllium	49.3	48.63		mg/Kg		99	80 - 120	1	20
Cadmium	49.3	46.44		mg/Kg		94	80 - 120	0	20
Chromium	49.3	50.11		mg/Kg		102	80 - 120	1	20
Cobalt	49.3	48.24		mg/Kg		98	80 - 120	1	20

Eurofins Calscience

2

1

5

6

8

10

12

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 570-236024/3-A ^5 Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 236320

Prep Type: Total/NA

Prep Batch: 236024

Omilia	1.000	1 CCD				0/ Daa		000
Spike	LC2D	LC2D				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
49.3	49.54		mg/Kg		101	80 - 120	1	20
49.3	48.58		mg/Kg		99	80 - 120	2	20
49.3	51.92		mg/Kg		105	80 - 120	1	20
49.3	48.37		mg/Kg		98	80 - 120	0	20
24.6	24.79		mg/Kg		101	80 - 120	0	20
49.3	47.80		mg/Kg		97	80 - 120	0	20
49.3	49.33		mg/Kg		100	80 - 120	1	20
49.3	45.32		mg/Kg		92	80 - 120	0	20
	49.3 49.3 49.3 49.3 24.6 49.3 49.3	Added Result 49.3 49.54 49.3 48.58 49.3 51.92 49.3 48.37 24.6 24.79 49.3 47.80 49.3 49.33	Added Result Qualifier 49.3 49.54 49.3 48.58 49.3 51.92 49.3 48.37 24.6 24.79 49.3 47.80 49.3 49.33	Added Result Qualifier Unit 49.3 49.54 mg/Kg 49.3 48.58 mg/Kg 49.3 51.92 mg/Kg 49.3 48.37 mg/Kg 24.6 24.79 mg/Kg 49.3 47.80 mg/Kg 49.3 49.33 mg/Kg	Added Result Qualifier Unit D 49.3 49.54 mg/Kg mg/Kg 49.3 48.58 mg/Kg 49.3 51.92 mg/Kg 49.3 48.37 mg/Kg 24.6 24.79 mg/Kg 49.3 47.80 mg/Kg 49.3 49.33 mg/Kg	Added Result Qualifier Unit D %Rec 49.3 49.54 mg/Kg 101 49.3 48.58 mg/Kg 99 49.3 51.92 mg/Kg 105 49.3 48.37 mg/Kg 98 24.6 24.79 mg/Kg 101 49.3 47.80 mg/Kg 97 49.3 49.33 mg/Kg 100	Added Result Qualifier Unit D %Rec Limits 49.3 49.54 mg/Kg 101 80 - 120 49.3 48.58 mg/Kg 99 80 - 120 49.3 51.92 mg/Kg 105 80 - 120 49.3 48.37 mg/Kg 98 80 - 120 24.6 24.79 mg/Kg 101 80 - 120 49.3 47.80 mg/Kg 97 80 - 120 49.3 49.33 mg/Kg 100 80 - 120	Added Result Qualifier Unit D %Rec Limits RPD 49.3 49.54 mg/Kg 101 80 - 120 1 49.3 48.58 mg/Kg 99 80 - 120 2 49.3 51.92 mg/Kg 105 80 - 120 1 49.3 48.37 mg/Kg 98 80 - 120 0 24.6 24.79 mg/Kg 101 80 - 120 0 49.3 47.80 mg/Kg 97 80 - 120 0 49.3 49.33 mg/Kg 100 80 - 120 1

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 570-233749/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 234080

Prep Type: Total/NA Prep Batch: 233749

MB MB

Result Qualifier Analyte RI **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 0.0833 0.0135 mg/Kg 05/12/22 16:44 05/13/22 14:44

Lab Sample ID: LCS 570-233749/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 234080

Prep Type: Total/NA

Prep Batch: 233749

Spike LCS LCS %Rec Added **Analyte** Result Qualifier Unit D %Rec Limits 0.385 Mercury 0.4121 mg/Kg 107 85 - 121

Lab Sample ID: LCSD 570-233749/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Analysis Batch: 234080

Prep Type: Total/NA Prep Batch: 233749

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.392	0.4219		mg/Kg		108	85 - 121	2	10

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 570-234061/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 234274** Prep Batch: 234061

MB MB Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac HEM: Oil and Grease ND 50.0 30.2 mg/Kg 05/13/22 11:53 05/13/22 11:53 HEM-SGT: Oil and Grease ND 50.0 13.9 mg/Kg 05/13/22 11:53 05/13/22 11:53

Lab Sample ID: LCS 570-234061/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 234274

Prep Type: Total/NA Prep Batch: 234061

Spike LCS LCS %Rec Added Result Qualifier Limits Unit D %Rec

Analyte HEM: Oil and Grease 333 310.0 mg/Kg 93 78 - 114 HEM-SGT: Oil and Grease 167 153.3 mg/Kg 92 64 - 132

QC Sample Results

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 1664A - HEM and SGT-HEM (Continued)

Client Samn	a ID: I عاد	h Control	Sample Dup

Lab Sample ID: LCSD 570-234061/3-A **Matrix: Solid Prep Type: Total/NA Analysis Batch: 234274** Prep Batch: 234061

LCSD LCSD Spike %Rec **RPD** Limits RPD Limit Analyte Added Result Qualifier Unit D %Rec HEM: Oil and Grease 333 323.3 mg/Kg 97 78 - 114 4 18 mg/Kg HEM-SGT: Oil and Grease 167 150.0 90 64 - 132 2 34

Matrix: Solid	Lab Sample ID: 570-95147-1 MS Matrix: Solid Analysis Batch: 234274									02205050002 ype: Total/NA
Analysis Batch: 234274	Sample	Sample	Spike	MS	MS				%Rec	atch: 234061
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
HEM: Oil and Grease	53.1	Н	332	381.9		mg/Kg		99	78 - 114	
HEM-SGT: Oil and Grease	29.9	JH	166	179.3		mg/Kg		90	64 - 132	

Lab Sample ID: 570-95147- Matrix: Solid Analysis Batch: 234274					Clie	nt Sam	ple ID: 20 Prep Ty Prep B	pe: Tot	al/NA		
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HEM: Oil and Grease	53.1	Н	332	374.9		mg/Kg		97	78 - 114	2	18
HEM-SGT: Oil and Grease	29.9	JH	166	175.8		mg/Kg		88	64 - 132	2	34

Page 38 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

GC/MS VOA

Analysis Batch: 234588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8260B	234601
MB 570-234601/3-A	Method Blank	Total/NA	Solid	8260B	234601
LCS 570-234601/1-A	Lab Control Sample	Total/NA	Solid	8260B	234601
LCSD 570-234601/2-A	Lab Control Sample Dup	Total/NA	Solid	8260B	234601
570-95147-1 MS	202205050002	Total/NA	Solid	8260B	234601
570-95147-1 MSD	202205050002	Total/NA	Solid	8260B	234601

Prep Batch: 234601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	5030C	
MB 570-234601/3-A	Method Blank	Total/NA	Solid	5030C	
LCS 570-234601/1-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 570-234601/2-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
570-95147-1 MS	202205050002	Total/NA	Solid	5030C	
570-95147-1 MSD	202205050002	Total/NA	Solid	5030C	

GC/MS Semi VOA

Prep Batch: 233796

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 3546	Prep Batch
MB 570-233796/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-233796/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-233796/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 235117

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8270C	233796
MB 570-233796/1-A	Method Blank	Total/NA	Solid	8270C	233796
LCS 570-233796/2-A	Lab Control Sample	Total/NA	Solid	8270C	233796
LCSD 570-233796/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C	233796

Prep Batch: 236468

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3546	
MB 570-236468/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-236468/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-236468/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 237091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8270C SIM	236468

Analysis Batch: 237436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-236468/1-A	Method Blank	Total/NA	Solid	8270C SIM	236468
LCS 570-236468/2-A	Lab Control Sample	Total/NA	Solid	8270C SIM	236468
LCSD 570-236468/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C SIM	236468

Page 39 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

GC Semi VOA

Prep Batch: 233622

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3546	
MB 570-233622/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-233622/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-233622/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 233627

Lab Sample ID MB 570-233622/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8081A	Prep Batch 233622
LCS 570-233622/2-A	Lab Control Sample	Total/NA	Solid	8081A	233622
LCSD 570-233622/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	233622

Prep Batch: 233724

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 3546	Prep Batch
MB 570-233724/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-233724/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-233724/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Prep Batch: 233769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3550C	
MB 570-233769/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-233769/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCS 570-233769/6-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-233769/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
LCSD 570-233769/7-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Analysis Batch: 233928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-233724/1-A	Method Blank	Total/NA	Solid	8082	233724
LCS 570-233724/2-A	Lab Control Sample	Total/NA	Solid	8082	233724
LCSD 570-233724/3-A	Lab Control Sample Dup	Total/NA	Solid	8082	233724

Analysis Batch: 234059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8015B	233769
MB 570-233769/1-A	Method Blank	Total/NA	Solid	8015B	233769
LCS 570-233769/2-A	Lab Control Sample	Total/NA	Solid	8015B	233769
LCS 570-233769/6-A	Lab Control Sample	Total/NA	Solid	8015B	233769
LCSD 570-233769/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	233769
LCSD 570-233769/7-A	Lab Control Sample Dup	Total/NA	Solid	8015B	233769

Prep Batch: 234174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8151A	
MB 570-234174/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 570-234174/2-A	Lab Control Sample	Total/NA	Solid	8151A	
LCSD 570-234174/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	

Client: Eurofins Eaton Analytical Job ID: 570-95147-1 Project/Site: 1002300

GC Semi VOA

Analy	vsis	Batch:	234290
,	,		

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8081A	233622

Analysis Batch: 234344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8082	233724

Analysis Batch: 235557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8151A	234174
LCS 570-234174/2-A	Lab Control Sample	Total/NA	Solid	8151A	234174
LCSD 570-234174/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	234174

Analysis Batch: 235864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-234174/1-A	Method Blank	Total/NA	Solid	8151A	234174

Metals

Prep Batch: 233749

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 7471A	Prep Batch
MB 570-233749/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-233749/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 570-233749/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	

Prep Batch: 233806

Lab Sample ID 570-95147-1	Client Sample ID 20220505050002	Prep Type Total/NA	Matrix Solid	Method 3050B	Prep Batch
MB 570-233806/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-233806/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-233806/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 234080

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	7471A	233749
MB 570-233749/1-A	Method Blank	Total/NA	Solid	7471A	233749
LCS 570-233749/2-A	Lab Control Sample	Total/NA	Solid	7471A	233749
LCSD 570-233749/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	233749

Analysis Batch: 235048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	6010B	233806
MB 570-233806/1-A	Method Blank	Total/NA	Solid	6010B	233806
LCS 570-233806/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	233806
LCSD 570-233806/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	233806

Prep Batch: 236024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3050B	
MB 570-236024/1-A ^5	Method Blank	Total/NA	Solid	3050B	
LCS 570-236024/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B	

Page 41 of 50

QC Association Summary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Metals (Continued)

Prep Batch: 236024 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 570-236024/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 236320

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 6010B	Prep Batch 236024
MB 570-236024/1-A ^5	Method Blank	Total/NA	Solid	6010B	236024
LCS 570-236024/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	236024
LCSD 570-236024/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	236024

General Chemistry

Prep Batch: 234061

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	1664A	<u> </u>
MB 570-234061/1-A	Method Blank	Total/NA	Solid	1664A	
LCS 570-234061/2-A	Lab Control Sample	Total/NA	Solid	1664A	
LCSD 570-234061/3-A	Lab Control Sample Dup	Total/NA	Solid	1664A	
570-95147-1 MS	202205050002	Total/NA	Solid	1664A	
570-95147-1 MSD	202205050002	Total/NA	Solid	1664A	

Analysis Batch: 234274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	1664A	234061
MB 570-234061/1-A	Method Blank	Total/NA	Solid	1664A	234061
LCS 570-234061/2-A	Lab Control Sample	Total/NA	Solid	1664A	234061
LCSD 570-234061/3-A	Lab Control Sample Dup	Total/NA	Solid	1664A	234061
570-95147-1 MS	202205050002	Total/NA	Solid	1664A	234061
570-95147-1 MSD	202205050002	Total/NA	Solid	1664A	234061

1

5

6

9

1 1

12

13

1 4

Lab Chronicle

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Client Sample ID: 202205050002

Lab Sample ID: 570-95147-1 Date Collected: 04/12/22 11:50 **Matrix: Solid**

Date Received: 05/06/22 10:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			5.08 g	5 mL	234601	05/17/22 01:41		ECL 4
Total/NA	Analysis Instrumer	8260B nt ID: GCMSLL		1	5 mL	5 mL	234588	05/17/22 03:10	N1A	ECL 4
Total/NA	Prep	3546			19.96 g	2 mL	233796	05/12/22 15:08		ECL 4
Total/NA	Analysis Instrumer	8270C at ID: GCMSTT		1			235117	05/18/22 15:30	N8CZ	ECL 4
Total/NA	Prep	3546			9.99 g	2 mL	236468	05/25/22 08:49		ECL 4
Total/NA	Analysis Instrumer	8270C SIM at ID: GCMSAAA		1			237091	05/26/22 20:46	ULLI	ECL 4
Total/NA	Prep	3550C			10.32 g	10 mL	233769	05/12/22 13:37	KG5J	ECL 4
Total/NA	Analysis Instrumer	8015B at ID: GC47		1			234059	05/14/22 03:26	A1W	ECL 4
Total/NA	Prep	3546			20.06 g	10 mL	233622	05/12/22 15:30		ECL 4
Total/NA	Analysis Instrumer	8081A nt ID: GC52A		1			234290	05/16/22 08:17	UHHN	ECL 4
Total/NA	Prep	3546			20.06 g	10 mL	233724	05/12/22 15:32		ECL 4
Total/NA	Analysis Instrumer	8082 nt ID: GC81A		1			234344	05/16/22 13:23	UHHN	ECL 4
Total/NA	Prep	8151A			50.27 g	5 mL	234174	05/17/22 15:21		ECL 4
Total/NA	Analysis Instrumer	8151A nt ID: GC41		1			235557	05/19/22 23:30	J7WE	ECL 4
Total/NA	Prep	3050B			2.03 g	50 mL	236024	05/21/22 12:45		ECL 4
Total/NA	Analysis Instrumer	6010B at ID: ICP10		5			236320	05/23/22 14:59	P1R	ECL 4
Total/NA	Prep	3050B			1.95 g	50 mL	233806	05/12/22 15:27	CS5Z	ECL 4
Total/NA	Analysis Instrumer	6010B at ID: ICP11		5			235048	05/18/22 05:50	P1R	ECL 4
Total/NA	Prep	7471A			0.52 g	50 mL	233749	05/12/22 16:44	SR3N	ECL 4
Total/NA	Analysis Instrumer	7471A nt ID: HG8		1			234080	05/13/22 15:19	VWJ7	ECL 4
Total/NA	Prep	1664A			30.15 g	30 g	234061	05/13/22 11:53	USUL	ECL 4
Total/NA	Analysis Instrumer	1664A nt ID: NOEQUIP		1			234274	05/13/22 11:53	L6IE	ECL 4

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Accreditation/Certification Summary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
California		State	2944	09-30-22
The following analytes the agency does not do		eport, but the laboratory is	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
1664A	1664A	Solid	HEM: Oil and Grease	
1664A	1664A	Solid	HEM-SGT: Oil and Grease	
Oregon		NELAP	CA300001	01-31-23
The following analytes the agency does not d		eport, but the laboratory is	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8082	3546	Solid	Polychlorinated biphenyls, T	otal

Method Summary

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Job ID: 570-95147-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	ECL 4
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	ECL 4
8270C SIM	PAHs (GC/MS SIM)	SW846	ECL 4
8015B	Diesel Range Organics (DRO) (GC)	SW846	ECL 4
8081A	Organochlorine Pesticides (GC)	SW846	ECL 4
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	ECL 4
8151A	Herbicides (GC)	SW846	ECL 4
6010B	Metals (ICP)	SW846	ECL 4
7471A	Mercury (CVAA)	SW846	ECL 4
1664A	HEM and SGT-HEM	1664A	ECL 4
1664A	HEM and SGT-HEM (Solid)	1664A	ECL 4
3050B	Preparation, Metals	SW846	ECL 4
3546	Microwave Extraction	SW846	ECL 4
3550C	Ultrasonic Extraction	SW846	ECL 4
5030C	Purge and Trap	SW846	ECL 4
7471A	Preparation, Mercury	SW846	ECL 4
8151A	Extraction (Herbicides)	SW846	ECL 4

Protocol References:

1664A = EPA-821-98-002

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Sample Summary

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Job ID: 570-95147-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 570-95147-1
 202205050002
 Solid
 04/12/22 11:50
 05/06/22 10:15

-

3

£

Ω

9

10

111

13

14

Date: 5/5/2022

Lator Ana ytoa

: eurofins

Eurofins Calscience

Ship To:

2841 Dow Avenue

Tustin, CA 92780

Report all quality control data according to Method, Include dates analyzed. Date extracted (if extracted) and Method reference on the report. Results must have Complete data & QC with Approval Signature.

Provide in each Report the Specified StateCertification # and Reports: Jackie Contreras Sub-Contracting Administrator

EMAIL TO: Eaton-MonroviaSubContract@eurofinset.com Eurofins Eaton Analytical, LLC 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605 nvoices to: Eurofins Eaton Analytical, LLC Phone (626) 386-1165 Fax (626) 386-1122

95147 Loc: 570 Samples from CALIFORNIA

Exp Date for requested tests + matrix.

Report Due: 05/11/2022 1002300

Folder #:

Fax. 714-894-7501

Phone 714-895-5494

PWSID Static ID: Clip Code Sample Date & Time Matrix 04/12/22 1150 DW Sample Point ID: Facility ID: Client Sample ID for reference onl Site #1 Sample Event: 202205050002 Sample type: Sample ID

Chain of Custody 570-95147

Molybdenum TTLC Subbed Chromium TTLC Subbed Vanadium TTLC Subbed Cadmium TTLC Subbed Selenium TTLC Subbed **Analysis Requested** Antimony TTLC Subbed Beryllium TTLC Subbed Thallium TTLC Subbed Mercury TTLC Subbed Arsenic TTLC Subbed Copper TTLC Subbed Barrum TTLC Subbed Cobalt TTLC Subbed Nickel TTLC Subbed Silver TTLC Subbed Lead TTLC Subbed Zinc TTLC Subbed Prep Method **EPA 3050B EPA 7471A EPA 3050B EPA 3050B EPA 3050B EPA 3050B EPA 3050B EPA 3050B** EPA 7471A Bagerhod abepa 6010 95EPA 6010 EPA 6010 QEPA 6010 **PEPA** 6010 EPA 6010 EPA 6010 EPA 6010 EPA 6010 EPA 6010 **EPA** 6010 **EPA 6010** EPA 6010 **EPA** 6010 **EPA** 6010 **EPA** 6010

An Acknowledgement of Receipt is requested to attn. Jackie Contreras NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS

いら

16/22 Time

Date J Date Date

Time Time

Time 11:16

Sample Control

Relinquished by:

Received by:

Sample Control

Relinquished by:

6-1/27

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www EurofinsUS com/Eaton

Page 1 of 2

Received by:

Sample ID 202205050002	Client Sample I. Site #1	Client Sample ID for reference on! Site #1		Sample Date & 04/12/22	& Time Matrix 2 1150 DW	Clip Code	PWSID	JLS
Sample type:	Ő	Sample Event:	Facility ID:	Samp	Sample Point ID:	Stat	Static ID:	
Method	Prep Method	Analysis Requested						
EPA 8081A	EPA 3545	5157_8081 Standard List						
EPA 8082	EPA 3545	8082						
EPA 8151A	EPA 8151A	576 - Chlorinated Herbicides	des					
EPA 8260B	EPA 5030C	Volatile Organic Compoui	nds by EPA 8260B					
EFA 02/00	7	027.00 PAIT SIM						
EFA 02/00 EPA 1664 HEM-0GT	00000	Old and Grease by 1664 HEM SGT	TES: MH					
SW-846 9071B		Oll and Grease)) ;					
EPA 8015M	EPA 3550B	6231 Motor Oil and 6232 Diesel	Diesel					
Relinquished by:	Sample C	Control CV	Date 55-22_ TI	Time 1116	NOTIFICATION REC	JUIRED IF RECEIVED C	NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS	
Received by:	7 x 12	2	Date 1/6/22 Ti	Time 15	An Acknowledgem	ent of Receipt Is requ	An Acknowledgement of Receiptus requested to attnivacine Contreras	
Relinquished by:	Sample Control	Control	Date Ti	Time				
Received by:			DateT	Time				
/2022 of 96 pa	750 Royal Oak	Page 2 of 2 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100	Page 2 of 2 CA 91016 Tel (626) 386		Fax (866) 988-3757 www EurofinsUS com/Eaton	/ EurofinsUS com/E	≣aton	
				1:		8	3 4 5	1
				3 4 5				

ORIGIN ID:WHPA (626) 386-1100 MANUEL A. VASQUEZ EUROFINS EATON ANALYTICAL 750 ROYAL DAKS DR SUIJE 100 MONROVIA, CA 91016 UNITED STATES US

SHIP DATE: 05MAY22 ACTWGT: 35.00 LB CAD: 0894108/CAFE3511 DIMS: 15x12x14 IN BILL SENDER

TO

Part # 156697-434 RRDB2

EUROFINS CALSCIENCE 2841 DOW AVE SUITE 100 TUSTIN CA 92780

DEPT: SUBOUTS/LOG - IN

TRK# 5717 5703 5102

FRI - 06 MAY 10:30A PRIORITY OVERNIGHT

92780 CA-US- SNA

Client: Eurofins Eaton Analytical

Job Number: 570-95147-1

Login Number: 95147 List Source: Eurofins Calscience

List Number: 1 Creator: Luu, Sheila

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-88009-1

Client Project/Site: Folder# 1002300, Job# 1000014

For:

Eurofins Eaton Analytical 750 Royal Oaks Drive Suite 100 Monrovia, California 91016

Attn: Jackie Contreras

Kinda C. Kaver

Authorized for release by: 6/8/2022 11:54:28 AM

Linda C. Laver, Senior Project Manager (916)374-4362

Linda.Laver@et.eurofinsus.com

····· Links ·····

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
Isotope Dilution Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

11

13

4.5

Definitions/Glossary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Qualifiers

	١
DIOAII	

POS

PQL PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The
	measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent

Case Narrative

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Laboratory: Eurofins Sacramento

Narrative

Job Narrative 320-88009-1

Receipt

The sample was received on 5/17/2022 10:10 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

Dioxin

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method Moisture: The reference method does not list a specific holding time for this procedure; therefore, the laboratory defaults to an in-house holding time of 14 days. The following sample was received after 14 days: 202205050002 (320-88009-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin Prep

Method 8290: The following samples was received after the 30 day holding time (HT) had expired for Method 8290A: 202205050002 (320-88009-1).

preparation batch 320-592576

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 320-88009-1

Detection Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Lab Sample ID: 320-88009-1

Job ID: 320-88009-1

Client Sample ID: 202205050002	
Client Samnie III: 707705050007	
Cheff Callible ID. ECEECOCOCCE	

Analyte	Result	Qualifier	RL	EDL	Unit	Dil Fac	D	Method	Prep Type
1,2,3,4,6,7,8-HpCDD	21	H H3 B	6.1	0.12	pg/g		₽	8290A	Total/NA
1,2,3,4,6,7,8-HpCDF	4.2	J H H3 q B	6.1	0.097	pg/g	1	₽	8290A	Total/NA
1,2,3,4,7,8,9-HpCDF	0.87	J H H3 B	6.1	0.11	pg/g	1	₩	8290A	Total/NA
1,2,3,4,7,8-HxCDD	0.81	J H H3 q B	6.1	0.16	pg/g	1	₽	8290A	Total/NA
1,2,3,4,7,8-HxCDF	1.1	J H H3 q B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
1,2,3,6,7,8-HxCDD	1.8	J H H3 B	6.1	0.15	pg/g	1	₩	8290A	Total/NA
1,2,3,6,7,8-HxCDF	0.83	J Н НЗ В	6.1	0.12	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8,9-HxCDD	2.4	J H H3 B	6.1	0.14	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8,9-HxCDF	0.94	J H H3 B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8-PeCDD	1.0	Ј Н НЗ В	6.1	0.12	pg/g	1	₽	8290A	Total/NA
1,2,3,7,8-PeCDF	1.2	J H H3 B	6.1	0.077	pg/g	1	₽	8290A	Total/NA
2,3,4,6,7,8-HxCDF	0.69	J H H3 B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
2,3,4,7,8-PeCDF	0.63	Ј Н НЗ В	6.1	0.095	pg/g	1	₩	8290A	Total/NA
2,3,7,8-TCDF	0.73	J H H3 B	1.2	0.076	pg/g	1	₩	8290A	Total/NA
OCDD	150	H H3 B	12	0.16	pg/g	1	₩	8290A	Total/NA
OCDF	13	H H3 B	12	0.13	pg/g	1	₩	8290A	Total/NA
Total HpCDD	40	H H3 B	6.1	0.12	pg/g	1	₩	8290A	Total/NA
Total HpCDF	10	H H3 q B	6.1	0.10	pg/g	1	₩	8290A	Total/NA
Total HxCDD	12	H H3 q B	6.1	0.15	pg/g	1	₩	8290A	Total/NA
Total HxCDF	9.8	H H3 q B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
Total PeCDD	2.5	J H H3 q B	6.1	0.12	pg/g	1	₽	8290A	Total/NA
Total PeCDF	5.0	J H H3 q B	6.1	0.086	pg/g	1	₩	8290A	Total/NA
Total TCDD	0.48	J H H3 q	1.2	0.14	pg/g	1	₩	8290A	Total/NA
Total TCDF	2.9	H H3 q B	1.2	0.076	pg/g	1	₩	8290A	Total/NA

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Client Sample ID: 2022050500002 Lab Sample ID: 320-88009-1

 Date Collected: 04/12/22 11:50
 Matrix: Solid

 Date Received: 05/17/22 10:10
 Percent Solids: 78.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	21	н нз в	6.1	0.12	pg/g	<u></u>	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,6,7,8-HpCDF	4.2	JH H3 qB	6.1	0.097	pg/g	≎	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,7,8,9-HpCDF	0.87	J H H3 B	6.1	0.11	pg/g	≎	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,7,8-HxCDD	0.81	JHH3qB	6.1	0.16	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,7,8-HxCDF	1.1	JH H3 qB	6.1	0.13	pg/g	≎	06/03/22 13:44	06/06/22 15:35	1
1,2,3,6,7,8-HxCDD	1.8	J H H3 B	6.1	0.15	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
1,2,3,6,7,8-HxCDF	0.83	J H H3 B	6.1	0.12	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8,9-HxCDD	2.4	J H H3 B	6.1	0.14	pg/g	≎	06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8,9-HxCDF	0.94	J H H3 B	6.1	0.13	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8-PeCDD	1.0	J H H3 B	6.1	0.12	pg/g	≎	06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8-PeCDF	1.2	J H H3 B	6.1	0.077	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
2,3,4,6,7,8-HxCDF	0.69	J H H3 B	6.1	0.13	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
2,3,4,7,8-PeCDF	0.63	J H H3 B	6.1	0.095	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
2,3,7,8-TCDD	ND	H H3	1.2	0.14	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
2,3,7,8-TCDF	0.73	J H H3 B	1.2	0.076	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
OCDD	150	н нз в	12	0.16	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
OCDF	13	н нз в	12	0.13	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total HpCDD	40	н нз в	6.1	0.12	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total HpCDF	10	H H3 q B	6.1	0.10	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total HxCDD	12	H H3 q B	6.1	0.15	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total HxCDF	9.8	H H3 q B	6.1	0.13	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total PeCDD	2.5	JHH3qB	6.1	0.12	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total PeCDF	5.0	JHH3qB	6.1	0.086	pg/g	≎	06/03/22 13:44	06/06/22 15:35	1
Total TCDD	0.48	J H H3 q	1.2	0.14	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Total TCDF	2.9	H H3 q B	1.2	0.076	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDF	56		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,6,7,8-HxCDD	73		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-2,3,7,8-TCDD	73		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-2,3,7,8-TCDF	71		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-OCDD	60		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,7,8-PeCDD	75		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,4,6,7,8-HpCDD	59		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,7,8-PeCDF	80		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,4,7,8-HxCDF	72		40 - 135				06/03/22 13:44	06/06/22 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21.2	H H3	0.1	0.1	%			05/20/22 15:35	1
Percent Solids	78.8	H H3	0.1	0.1	%			05/20/22 15:35	1

Surrogate Summary

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

-			Percent Surrogate Recovery (Acceptance Limits)
		37TCDD	
Lab Sample ID	Client Sample ID		
320-88009-1	202205050002	98	
LCS 320-592576/2-A	Lab Control Sample	98	
LCSD 320-592576/3-A	Lab Control Sample Dup	98	
MB 320-592576/1-A	Method Blank	97	
Surrogate Legend			
37TCDD = 37Cl4-2,3,7	,8-TCDD		

Isotope Dilution Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)									
		HpCDF	HxDD	TCDD	TCDF	OCDD	PeCDD	HpCDD	PeCDF		
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)		
320-88009-1	202205050002	56	73	73	71	60	75	59	80		
LCS 320-592576/2-A	Lab Control Sample	89	90	67	67	76	66	86	68		
LCSD 320-592576/3-A	Lab Control Sample Dup	86	81	66	68	74	61	81	68		
MB 320-592576/1-A	Method Blank	84	91	70	69	94	67	92	75		
		Percent Isotope Dilution Recovery (Acceptance Limits)									
		HxCDF									
Lab Sample ID	Client Sample ID	(40-135)									
320-88009-1	202205050002	72									
LCS 320-592576/2-A	Lab Control Sample	87									
LCSD 320-592576/3-A	Lab Control Sample Dup	71									
MB 320-592576/1-A	Method Blank	85									
Surrogate Legend											

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

OCDD = 13C-OCDD

PeCDD = 13C-1,2,3,7,8-PeCDD

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

HxCDF = 13C-1,2,3,4,7,8-HxCDF

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

MD MD

Lab Sample ID: MB 320-592576/1-A

Matrix: Solid

Analysis Batch: 593108

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 592576

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	1.67	J	5.0	0.051	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,6,7,8-HpCDF	1.07	Jq	5.0	0.076	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,7,8,9-HpCDF	0.780	J q	5.0	0.082	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,7,8-HxCDD	0.713	Jq	5.0	0.046	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,7,8-HxCDF	0.798	J	5.0	0.056	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,6,7,8-HxCDD	0.793	J	5.0	0.040	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,6,7,8-HxCDF	0.695	J	5.0	0.057	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8,9-HxCDD	0.752	J	5.0	0.040	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8,9-HxCDF	0.695	J	5.0	0.058	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8-PeCDD	0.693	J	5.0	0.096	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8-PeCDF	0.641	J	5.0	0.057	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,4,6,7,8-HxCDF	0.744	J	5.0	0.054	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,4,7,8-PeCDF	0.573	J	5.0	0.069	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,7,8-TCDD	ND		1.0	0.19	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,7,8-TCDF	0.258	J q	1.0	0.032	pg/g		06/03/22 13:44	06/06/22 13:12	1
OCDD	8.56	J	10	0.074	pg/g		06/03/22 13:44	06/06/22 13:12	1
OCDF	2.30	J	10	0.099	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HpCDD	2.55	J	5.0	0.051	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HpCDF	2.19	Jq	5.0	0.079	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HxCDD	2.26	J q	5.0	0.042	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HxCDF	2.93	J	5.0	0.056	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total PeCDD	0.883	Jq	5.0	0.096	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total PeCDF	1.21	J	5.0	0.063	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total TCDD	ND		1.0	0.19	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total TCDF	0.258	Jq	1.0	0.032	pg/g		06/03/22 13:44	06/06/22 13:12	1
	MB	MB							
	0/5	•							-··-

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDF	84		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-1,2,3,6,7,8-HxCDD	91		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-2,3,7,8-TCDD	70		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-2,3,7,8-TCDF	69		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-OCDD	94		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-1,2,3,7,8-PeCDD	67		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-1,2,3,7,8-PeCDF	75		40 - 135	06/03/22 13:44	06/06/22 13:12	1
13C-1,2,3,4,7,8-HxCDF	85		40 - 135	06/03/22 13:44	06/06/22 13:12	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 37CI4-2,3,7,8-TCDD 06/03/22 13:44 06/06/22 13:12 97

Lab Sample ID: LCS 320-592576/2-A

Matrix: Solid

Analysis Batch: 593108

			Prep Type: Total/NA Prep Batch: 592576
			%Rec
Unit	D %	6Rec	Limits

Client Sample ID: Lab Control Sample

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,4,6,7,8-HpCDD	100	105		pg/g		105	86 - 134	
1,2,3,4,6,7,8-HpCDF	100	99.0		pg/g		99	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	102		pg/g		102	79 - 139	

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-592576/2-A

Matrix: Solid

Analysis Batch: 593108

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 592576 %Rec

,, c.c = a.co ccc . cc						
	Spike	LCS L	cs		%Rec	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
1,2,3,4,7,8-HxCDD	100	99.0	pg/g	99	65 - 144	
1,2,3,4,7,8-HxCDF	100	105	pg/g	105	72 - 140	
1,2,3,6,7,8-HxCDD	100	102	pg/g	102	73 - 147	
1,2,3,6,7,8-HxCDF	100	101	pg/g	101	63 - 152	
1,2,3,7,8,9-HxCDD	100	84.2	pg/g	84	80 - 143	
1,2,3,7,8,9-HxCDF	100	102	pg/g	102	72 - 152	
1,2,3,7,8-PeCDD	100	109	pg/g	109	79 - 134	
1,2,3,7,8-PeCDF	100	105	pg/g	105	81 - 134	
2,3,4,6,7,8-HxCDF	100	103	pg/g	103	72 - 151	
2,3,4,7,8-PeCDF	100	106	pg/g	106	76 - 132	
2,3,7,8-TCDD	20.0	20.6	pg/g	103	77 - 130	
2,3,7,8-TCDF	20.0	20.4	pg/g	102	79 - 137	
OCDD	200	187	pg/g	93	80 - 137	
OCDF	200	198	pg/g	99	75 - 141	

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,4,6,7,8-HpCDF	89		40 - 135
13C-1,2,3,6,7,8-HxCDD	90		40 - 135
13C-2,3,7,8-TCDD	67		40 - 135
13C-2,3,7,8-TCDF	67		40 - 135
13C-OCDD	76		40 - 135
13C-1,2,3,7,8-PeCDD	66		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	86		40 - 135
13C-1,2,3,7,8-PeCDF	68		40 - 135
13C-1,2,3,4,7,8-HxCDF	87		40 - 135

LCS LCS

Surrogate %Recovery Qualifier Limits 37CI4-2,3,7,8-TCDD

Lab Sample ID: LCSD 320-592576/3-A

Matrix: Solid

Analysis Batch: 593108

Client Sample II	D: Lab	Control	Sampl	e Dup
		Pren Ty	me: To	tal/NA

Prep Batch: 592576

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3,4,6,7,8-HpCDD	100	101		pg/g		101	86 - 134	4	20
1,2,3,4,6,7,8-HpCDF	100	98.0		pg/g		98	81 - 137	1	20
1,2,3,4,7,8,9-HpCDF	100	101		pg/g		101	79 - 139	2	20
1,2,3,4,7,8-HxCDD	100	103		pg/g		103	65 - 144	4	20
1,2,3,4,7,8-HxCDF	100	103		pg/g		103	72 - 140	1	20
1,2,3,6,7,8-HxCDD	100	98.6		pg/g		99	73 - 147	4	20
1,2,3,6,7,8-HxCDF	100	99.4		pg/g		99	63 - 152	2	20
1,2,3,7,8,9-HxCDD	100	95.7		pg/g		96	80 - 143	13	20
1,2,3,7,8,9-HxCDF	100	101		pg/g		101	72 - 152	1	20
1,2,3,7,8-PeCDD	100	110		pg/g		110	79 - 134	1	20
1,2,3,7,8-PeCDF	100	100		pg/g		100	81 - 134	4	20
2,3,4,6,7,8-HxCDF	100	102		pg/g		102	72 - 151	1	20
2,3,4,7,8-PeCDF	100	106		pg/g		106	76 - 132	0	20
2,3,7,8-TCDD	20.0	20.8		pg/g		104	77 - 130	1	20

Page 10 of 18

QC Sample Results

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

La	b	Sa	mp	ole	ID:	LCSD	320-	59257	6/3-A	
	-		_							

Matrix: Solid

Analysis Batch: 593108

Prep Type: Total/NA Prep Batch: 592576

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDF	20.0	20.3		pg/g		102	79 - 137	1	20
OCDD	200	185		pg/g		93	80 - 137	1	20
OCDF	200	193		pg/g		96	75 - 141	2	20

OODI			200
	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,4,6,7,8-HpCDF	86		40 - 135
13C-1,2,3,6,7,8-HxCDD	81		40 - 135
13C-2,3,7,8-TCDD	66		40 - 135
13C-2,3,7,8-TCDF	68		40 - 135
13C-OCDD	74		40 - 135
13C-1,2,3,7,8-PeCDD	61		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	81		40 - 135
13C-1,2,3,7,8-PeCDF	68		40 - 135
13C-1,2,3,4,7,8-HxCDF	71		40 - 135
	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	98		

	ľ	a	

10

40

13

14

QC Association Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Specialty Organics

Job ID: 320-88009-1

Prep Batch: 592576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-88009-1	202205050002	Total/NA	Solid	8290	
MB 320-592576/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-592576/2-A	Lab Control Sample	Total/NA	Solid	8290	
LCSD 320-592576/3-A	Lab Control Sample Dup	Total/NA	Solid	8290	

Analysis Batch: 593108

Lab Sample ID 320-88009-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 8290A	Prep Batch 592576
MB 320-592576/1-A	Method Blank	Total/NA	Solid	8290A	592576
LCS 320-592576/2-A	Lab Control Sample	Total/NA	Solid	8290A	592576
LCSD 320-592576/3-A	Lab Control Sample Dup	Total/NA	Solid	8290A	592576

General Chemistry

Analysis Batch: 589349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-88009-1	202205050002	Total/NA	Solid	D 2216	_

Lab Chronicle

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Client Sample ID: 2022050500002 Lab Sample ID: 320-88009-1

Date Collected: 04/12/22 11:50

Date Received: 05/17/22 10:10

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Method **Factor** or Analyzed **Prep Type** Type Run **Amount Amount** Number Analyst Lab Total/NA Analysis D 2216 589349 05/20/22 15:35 TCS TAL SAC

Client Sample ID: 202205050002 Lab Sample ID: 320-88009-1

Date Collected: 04/12/22 11:50

Matrix: Solid
Date Received: 05/17/22 10:10

Percent Solids: 78.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.34 g	20.0 uL	592576	06/03/22 13:44	СВ	TAL SAC
Total/NA	Analysis	8290A		1			593108	06/06/22 15:35	GRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Laboratory: Eurofins Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority California		rogram	Identification Number	Expiration Date 01-31-23	
		tate	2897		
The following analytes the agency does not o		ort, but the laboratory is r	ot certified by the governing authority.	This list may include analytes for which	
are agency does not t	oner certinoation.				
Analysis Method	Prep Method	Matrix	Analyte		
o ,		Matrix Solid	Analyte Percent Moisture		

5

7

10

12

14

15

Method Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Method **Method Description** Protocol Laboratory 8290A Dioxins and Furans (HRGC/HRMS) SW846 TAL SAC D 2216 **ASTM** TAL SAC Percent Moisture 8290 Soxhlet Extraction of Dioxins and Furans SW846 TAL SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-88009-1

Sample Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 320-88009-1
 202205050002
 Solid
 04/12/22 11:50
 05/17/22 10:10

1

Job ID: 320-88009-1

3

3

4

8

9

a a

12

. .

14

4.6

5

Date: 5/16/2022

*REPORTING REQUIRMENTS: Do Not Combine Reports with any other samples submitted under different Folder Numbers! Report & Invoice must have the Folder# 1002300 Job # 1000014

Submittal Form

Report all quality control data according to Method, Include dates analyzed. Date extracted (if extracted) and Method reference on the report. Results must have Complete data & QC with Approval Signature.

Eurofins Eaton Analytical, LLC 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Reports: Jackie Contreras Sub-Contracting Administrator EMAIL TO: Eaton-MonroviaSubContract@eurofinset.com Invoices to: Eurofins Eaton Analytical, LLC Phone (626) 386-1165 Fax (626) 386-1122

Specified StateCertification # and Exp Date for requested tests + matrix. Provide in each Report the

Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605

Fax: 916-372-7768

Phone: 916-373-5600

West Sacramento, CA 95605-1501

Test America, Inc - Sacramento

Ship To:

880 Riverside Parkway

Eaton Analytical

eurofins 😽

Samples from: CALIFORNIA

Static ID: Sample Date & Time Matrix 04/12/22 1150 DW Sample Point ID:

JLS

PWSID

Clip Code

Dioxin/Furan - MDL and RL reporting **Analysis Requested Prep Method EPA 3510C** EPA8290 Method

Client Sample ID for reference onl Site #1

202205050002

Sample ID

Sample type

Report Due:

Folder #: 1002300

05/11/2022

Sample Event:

Facility ID:

1200 Time (0 (0 Time Time Time Date 5/16 Date Date Date B Sample Control Sample Control Relinquished by: Relinquished by Received by: Received by:

An Acknowledgement of Receipt is requested to attn. Jackie Contreras NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www.EurofinsUS.com/Eaton Page 1 of 1

Client: Eurofins Eaton Analytical Job Number: 320-88009-1

Login Number: 88009 List Source: Eurofins Sacramento

List Number: 1 Creator: Her, David A

orcator. Hor, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	False	Matrix listed on COC as DW, but sample is soil
Samples are received within Holding Time (excluding tests with immediate HTs)	False	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-88009-1

Client Project/Site: Folder# 1002300, Job# 1000014

For:

Eurofins Eaton Analytical 750 Royal Oaks Drive Suite 100 Monrovia, California 91016

Attn: Jackie Contreras

Jinda C. Javer

Authorized for release by: 6/8/2022 11:54:28 AM

Linda C. Laver, Senior Project Manager (916)374-4362

Linda.Laver@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

9

1 1

12

15

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
Isotope Dilution Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

6

8

10

12

13

Definitions/Glossary

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Qualifiers

-11		w	ın
$\mathbf{\nu}$	ıv	ノヘ	

POS

PQL PRES

QC

RL

RER

RPD

TEF

TEQ

TNTC

Positive / Present
Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The
	measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.

H3	Sample was received and analyzed past holding time.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent

Eurofins Sacramento

Page 3 of 18 6/8/2022

Case Narrative

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Laboratory: Eurofins Sacramento

Narrative

Job Narrative 320-88009-1

Receipt

The sample was received on 5/17/2022 10:10 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

Dioxin

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method Moisture: The reference method does not list a specific holding time for this procedure; therefore, the laboratory defaults to an in-house holding time of 14 days. The following sample was received after 14 days: 202205050002 (320-88009-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin Prep

Method 8290: The following samples was received after the 30 day holding time (HT) had expired for Method 8290A: 202205050002 (320-88009-1).

preparation batch 320-592576

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

Job ID: 320-88009-1

3

4

5

6

4

10

4.0

13

14

Detection Summary

Client: Eurofins Eaton Analytical Project/Site: Folder# 1002300, Job# 1000014

Client Sample ID: 202205050002

Lab Sample ID: 320-88009-1

Job ID: 320-88009-1

Analyte	Result	Qualifier	RL	EDL	Unit	Dil Fac	D	Method	Prep Type
1,2,3,4,6,7,8-HpCDD	21	H H3 B	6.1	0.12	pg/g	1	☼	8290A	Total/NA
1,2,3,4,6,7,8-HpCDF	4.2	J H H3 q B	6.1	0.097	pg/g	1	₩	8290A	Total/NA
1,2,3,4,7,8,9-HpCDF	0.87	J H H3 B	6.1	0.11	pg/g	1	₩	8290A	Total/NA
1,2,3,4,7,8-HxCDD	0.81	J H H3 q B	6.1	0.16	pg/g	1	₩	8290A	Total/NA
1,2,3,4,7,8-HxCDF	1.1	J H H3 q B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
1,2,3,6,7,8-HxCDD	1.8	J H H3 B	6.1	0.15	pg/g	1	₩	8290A	Total/NA
1,2,3,6,7,8-HxCDF	0.83	J H H3 B	6.1	0.12	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8,9-HxCDD	2.4	J H H3 B	6.1	0.14	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8,9-HxCDF	0.94	J H H3 B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8-PeCDD	1.0	J H H3 B	6.1	0.12	pg/g	1	₩	8290A	Total/NA
1,2,3,7,8-PeCDF	1.2	J H H3 B	6.1	0.077	pg/g	1	☼	8290A	Total/NA
2,3,4,6,7,8-HxCDF	0.69	J H H3 B	6.1	0.13	pg/g	1	☼	8290A	Total/NA
2,3,4,7,8-PeCDF	0.63	J H H3 B	6.1	0.095	pg/g	1	₩	8290A	Total/NA
2,3,7,8-TCDF	0.73	J H H3 B	1.2	0.076	pg/g	1	₩	8290A	Total/NA
OCDD	150	н нз в	12	0.16	pg/g	1	₩	8290A	Total/NA
OCDF	13	Н НЗ В	12	0.13	pg/g	1	☼	8290A	Total/NA
Total HpCDD	40	н нз в	6.1	0.12	pg/g	1	₩	8290A	Total/NA
Total HpCDF	10	H H3 q B	6.1	0.10	pg/g	1	₩	8290A	Total/NA
Total HxCDD	12	H H3 q B	6.1	0.15	pg/g	1	☼	8290A	Total/NA
Total HxCDF	9.8	H H3 q B	6.1	0.13	pg/g	1	₩	8290A	Total/NA
Total PeCDD	2.5	J H H3 q B	6.1	0.12	pg/g	1	₩	8290A	Total/NA
Total PeCDF	5.0	J H H3 q B	6.1	0.086	pg/g	1	☼	8290A	Total/NA
Total TCDD	0.48	J H H3 q	1.2		pg/g	1	☼	8290A	Total/NA
Total TCDF	2.9	H H3 q B	1.2	0.076		1	₩	8290A	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Percent Solids

Client Sample ID: 202205050002 Lab Sample ID: 320-88009-1

Date Collected: 04/12/22 11:50 **Matrix: Solid** Date Received: 05/17/22 10:10 Percent Solids: 78.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	21	H H3 B	6.1	0.12	pg/g	— -	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,6,7,8-HpCDF	4.2	J H H3 q B	6.1	0.097		₩	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,7,8,9-HpCDF	0.87	J H H3 B	6.1	0.11	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,7,8-HxCDD	0.81	JHH3qB	6.1	0.16	pg/g		06/03/22 13:44	06/06/22 15:35	1
1,2,3,4,7,8-HxCDF	1.1	J H H3 q B	6.1	0.13	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
1,2,3,6,7,8-HxCDD	1.8	J H H3 B	6.1	0.15		₩	06/03/22 13:44	06/06/22 15:35	1
1,2,3,6,7,8-HxCDF	0.83	J H H3 B	6.1	0.12	pg/g		06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8,9-HxCDD	2.4	J H H3 B	6.1	0.14	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8,9-HxCDF	0.94	J H H3 B	6.1	0.13	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8-PeCDD	1.0	J H H3 B	6.1		pg/g		06/03/22 13:44	06/06/22 15:35	1
1,2,3,7,8-PeCDF	1.2	J H H3 B	6.1	0.077	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
2,3,4,6,7,8-HxCDF	0.69	J H H3 B	6.1	0.13	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
2,3,4,7,8-PeCDF		J H H3 B	6.1	0.095			06/03/22 13:44	06/06/22 15:35	1
2,3,7,8-TCDD	ND	H H3	1.2		pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
2,3,7,8-TCDF	0.73	J H H3 B	1.2	0.076	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
OCDD	150	H H3 B	12		pg/g		06/03/22 13:44	06/06/22 15:35	1
OCDF	13	H H3 B	12		pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
Total HpCDD	40	H H3 B	6.1	0.12	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
Total HpCDF	10	H H3 q B	6.1	0.10	pg/g		06/03/22 13:44	06/06/22 15:35	1
Total HxCDD	12	H H3 q B	6.1	0.15	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
Total HxCDF	9.8	H H3 q B	6.1	0.13	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
Total PeCDD	2.5	JHH3qB	6.1		pg/g		06/03/22 13:44	06/06/22 15:35	1
Total PeCDF	5.0	JHH3qB	6.1	0.086		₩	06/03/22 13:44	06/06/22 15:35	1
Total TCDD	0.48	J H H3 q	1.2	0.14	pg/g	₩	06/03/22 13:44	06/06/22 15:35	1
Total TCDF	2.9	H H3 q B	1.2	0.076	pg/g	₽	06/03/22 13:44	06/06/22 15:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDF	56		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,6,7,8-HxCDD	73		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-2,3,7,8-TCDD	73		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-2,3,7,8-TCDF	71		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-OCDD	60		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,7,8-PeCDD	75		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,4,6,7,8-HpCDD	59		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,7,8-PeCDF	80		40 - 135				06/03/22 13:44	06/06/22 15:35	1
13C-1,2,3,4,7,8-HxCDF	72		40 - 135				06/03/22 13:44	06/06/22 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD	98						06/03/22 13:44		1
Conoral Chamiatur									
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture		H H3	0.1	0.1				05/20/22 15:35	1

05/20/22 15:35

0.1

0.1 %

78.8 H H3

Surrogate Summary

Client: Eurofins Eaton Analytical Project/Site: Folder# 1002300, Job# 1000014 Job ID: 320-88009-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Prep Type: Total/NA **Matrix: Solid**

_			Percent Surrogate Recovery (Acceptance Limits)
		37TCDD	
Lab Sample ID	Client Sample ID		
320-88009-1	202205050002	98	
LCS 320-592576/2-A	Lab Control Sample	98	
LCSD 320-592576/3-A	Lab Control Sample Dup	98	
MB 320-592576/1-A	Method Blank	97	
Surrogate Legend			
37TCDD = 37Cl4-2,3,7	,8-TCDD		

Page 7 of 18

Isotope Dilution Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		HpCDF	HxDD	TCDD	TCDF	OCDD	PeCDD	HpCDD	PeCDF
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)
320-88009-1	202205050002	56	73	73	71	60	75	59	80
LCS 320-592576/2-A	Lab Control Sample	89	90	67	67	76	66	86	68
LCSD 320-592576/3-A	Lab Control Sample Dup	86	81	66	68	74	61	81	68
MB 320-592576/1-A	Method Blank	84	91	70	69	94	67	92	75
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		HxCDF							
Lab Sample ID	Client Sample ID	(40-135)							
320-88009-1	202205050002	72							
LCS 320-592576/2-A	Lab Control Sample	87							
LCSD 320-592576/3-A	Lab Control Sample Dup	71							
MB 320-592576/1-A	Method Blank	85							

Surrogate Legend

HpCDF = 13C-1,2,3,4,6,7,8-HpCDF

HxDD = 13C-1,2,3,6,7,8-HxCDD

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

OCDD = 13C-OCDD

PeCDD = 13C-1,2,3,7,8-PeCDD

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

PeCDF = 13C-1,2,3,7,8-PeCDF

HxCDF = 13C-1,2,3,4,7,8-HxCDF

Eurofins Sacramento

Page 8 of 18

5

Job ID: 320-88009-1

3

4

5

7

ŏ

10

12

13

15

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-592576/1-A

Matrix: Solid

Analysis Batch: 593108

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 592576

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	1.67	J	5.0	0.051	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,6,7,8-HpCDF	1.07	Jq	5.0	0.076	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,7,8,9-HpCDF	0.780	Jq	5.0	0.082	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,7,8-HxCDD	0.713	Jq	5.0	0.046	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,4,7,8-HxCDF	0.798	J	5.0	0.056	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,6,7,8-HxCDD	0.793	J	5.0	0.040	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,6,7,8-HxCDF	0.695	J	5.0	0.057	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8,9-HxCDD	0.752	J	5.0	0.040	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8,9-HxCDF	0.695	J	5.0	0.058	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8-PeCDD	0.693	J	5.0	0.096	pg/g		06/03/22 13:44	06/06/22 13:12	1
1,2,3,7,8-PeCDF	0.641	J	5.0	0.057	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,4,6,7,8-HxCDF	0.744	J	5.0	0.054	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,4,7,8-PeCDF	0.573	J	5.0	0.069	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,7,8-TCDD	ND		1.0	0.19	pg/g		06/03/22 13:44	06/06/22 13:12	1
2,3,7,8-TCDF	0.258	Jq	1.0	0.032	pg/g		06/03/22 13:44	06/06/22 13:12	1
OCDD	8.56	J	10	0.074	pg/g		06/03/22 13:44	06/06/22 13:12	1
OCDF	2.30	J	10	0.099	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HpCDD	2.55	J	5.0	0.051	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HpCDF	2.19	Jq	5.0	0.079	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HxCDD	2.26	Jq	5.0	0.042	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total HxCDF	2.93	J	5.0	0.056	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total PeCDD	0.883	Jq	5.0	0.096	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total PeCDF	1.21	J	5.0	0.063	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total TCDD	ND		1.0	0.19	pg/g		06/03/22 13:44	06/06/22 13:12	1
Total TCDF	0.258	Jq	1.0	0.032	pg/g		06/03/22 13:44	06/06/22 13:12	1
	MB	MB							

	MB MB			
Isotope Dilution	%Recovery Qua	lifier Limits	Prepared Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDF	84	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-1,2,3,6,7,8-HxCDD	91	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-2,3,7,8-TCDD	70	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-2,3,7,8-TCDF	69	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-OCDD	94	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-1,2,3,7,8-PeCDD	67	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-1,2,3,4,6,7,8-HpCDD	92	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-1,2,3,7,8-PeCDF	75	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1
13C-1,2,3,4,7,8-HxCDF	85	40 - 135	06/03/22 13:44 06/06/22 13:1	2 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	97			06/03/22 13:44	06/06/22 13:12	1

Lab Sample ID: LCS 320-592576/2-A

Matrix: Solid Analysis Batch: 593108								pe: Total/NA atch: 592576
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,4,6,7,8-HpCDD	100	105		pg/g		105	86 - 134	
1,2,3,4,6,7,8-HpCDF	100	99.0		pg/g		99	81 - 137	
1.2.3.4.7.8.9-HpCDF	100	102		pa/a		102	79 - 139	

Eurofins Sacramento

Client Sample ID: Lab Control Sample

Page 9 of 18 6/8/2022

QC Sample Results

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-592576/2-A

Matrix: Solid

Analysis Batch: 593108

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 592576 %Rec

,, c.c = a.co ccc . cc						
	Spike	LCS L	cs		%Rec	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
1,2,3,4,7,8-HxCDD	100	99.0	pg/g	99	65 - 144	
1,2,3,4,7,8-HxCDF	100	105	pg/g	105	72 - 140	
1,2,3,6,7,8-HxCDD	100	102	pg/g	102	73 - 147	
1,2,3,6,7,8-HxCDF	100	101	pg/g	101	63 - 152	
1,2,3,7,8,9-HxCDD	100	84.2	pg/g	84	80 - 143	
1,2,3,7,8,9-HxCDF	100	102	pg/g	102	72 - 152	
1,2,3,7,8-PeCDD	100	109	pg/g	109	79 - 134	
1,2,3,7,8-PeCDF	100	105	pg/g	105	81 - 134	
2,3,4,6,7,8-HxCDF	100	103	pg/g	103	72 - 151	
2,3,4,7,8-PeCDF	100	106	pg/g	106	76 - 132	
2,3,7,8-TCDD	20.0	20.6	pg/g	103	77 - 130	
2,3,7,8-TCDF	20.0	20.4	pg/g	102	79 - 137	
OCDD	200	187	pg/g	93	80 - 137	
OCDF	200	198	pg/g	99	75 - 141	

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,4,6,7,8-HpCDF	89		40 - 135
13C-1,2,3,6,7,8-HxCDD	90		40 - 135
13C-2,3,7,8-TCDD	67		40 - 135
13C-2,3,7,8-TCDF	67		40 - 135
13C-OCDD	76		40 - 135
13C-1,2,3,7,8-PeCDD	66		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	86		40 - 135
13C-1,2,3,7,8-PeCDF	68		40 - 135
13C-1,2,3,4,7,8-HxCDF	87		40 - 135

LCS LCS

Surrogate %Recovery Qualifier Limits 37CI4-2,3,7,8-TCDD

Lab Sample ID: LCSD 320-592576/3-A

Matrix: Solid

Analysis Batch: 593108

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 592576

Analysis Batch. 555100							i icp De	itori. ot	22010
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3,4,6,7,8-HpCDD	100	101		pg/g		101	86 - 134	4	20
1,2,3,4,6,7,8-HpCDF	100	98.0		pg/g		98	81 - 137	1	20
1,2,3,4,7,8,9-HpCDF	100	101		pg/g		101	79 - 139	2	20
1,2,3,4,7,8-HxCDD	100	103		pg/g		103	65 - 144	4	20
1,2,3,4,7,8-HxCDF	100	103		pg/g		103	72 - 140	1	20
1,2,3,6,7,8-HxCDD	100	98.6		pg/g		99	73 - 147	4	20
1,2,3,6,7,8-HxCDF	100	99.4		pg/g		99	63 - 152	2	20
1,2,3,7,8,9-HxCDD	100	95.7		pg/g		96	80 - 143	13	20
1,2,3,7,8,9-HxCDF	100	101		pg/g		101	72 - 152	1	20
1,2,3,7,8-PeCDD	100	110		pg/g		110	79 - 134	1	20
1,2,3,7,8-PeCDF	100	100		pg/g		100	81 - 134	4	20
2,3,4,6,7,8-HxCDF	100	102		pg/g		102	72 - 151	1	20
2,3,4,7,8-PeCDF	100	106		pg/g		106	76 - 132	0	20
2,3,7,8-TCDD	20.0	20.8		pg/g		104	77 - 130	1	20

Eurofins Sacramento

Page 10 of 18

QC Sample Results

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

L	_a	b	S	amp	le	ID:	LCSD	320-592576/3-A	
-	-	-		_					

Matrix: Solid

13C-1,2,3,7,8-PeCDD

13C-1,2,3,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

Analysis Batch: 593108

Client Sample	ID:	Lab	Conti	rol	Sample	Dup

Prep Type: Total/NA

Prep Batch: 592576

			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDF			20.0	20.3		pg/g		102	79 - 137	1	20
OCDD			200	185		pg/g		93	80 - 137	1	20
OCDF			200	193		pg/g		96	75 - 141	2	20
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C-1,2,3,4,6,7,8-HpCDF	86		40 - 135								
13C-1,2,3,6,7,8-HxCDD	81		40 - 135								
13C-2,3,7,8-TCDD	66		40 - 135								
13C-2,3,7,8-TCDF	68		40 - 135								
13C-OCDD	74		40 - 135								

40 - 135

40 - 135

40 - 135

40 - 135

Limits

LCSD LCSD

61

81

68

71

%Recovery Qualifier Surrogate

37CI4-2,3,7,8-TCDD 98

QC Association Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Job ID: 320-88009-1

Specialty Organics

Prep Batch: 592576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-88009-1	202205050002	Total/NA	Solid	8290	
MB 320-592576/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-592576/2-A	Lab Control Sample	Total/NA	Solid	8290	
LCSD 320-592576/3-A	Lab Control Sample Dup	Total/NA	Solid	8290	

Analysis Batch: 593108

Lab Sample ID 320-88009-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 8290A	Prep Batch 592576
MB 320-592576/1-A	Method Blank	Total/NA	Solid	8290A	592576
LCS 320-592576/2-A	Lab Control Sample	Total/NA	Solid	8290A	592576
LCSD 320-592576/3-A	Lab Control Sample Dup	Total/NA	Solid	8290A	592576

General Chemistry

Analysis Batch: 589349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-88009-1	202205050002	Total/NA	Solid	D 2216	

Eurofins Sacramento

2

J

6

<u>۾</u>

9

10

40

13

14

Lab Chronicle

Client: Eurofins Eaton Analytical Job ID: 320-88009-1

Project/Site: Folder# 1002300, Job# 1000014

Client Sample ID: 202205050002 Lab Sample ID: 320-88009-1

Date Collected: 04/12/22 11:50 **Matrix: Solid**

Date Received: 05/17/22 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			589349	05/20/22 15:35	TCS	TAL SAC

Client Sample ID: 202205050002

Lab Sample ID: 320-88009-1 Date Collected: 04/12/22 11:50 **Matrix: Solid**

Date Received: 05/17/22 10:10 Percent Solids: 78.8

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8290			10.34 g	20.0 uL	592576	06/03/22 13:44	СВ	TAL SAC
Total/NA	Analysis	8290A		1			593108	06/06/22 15:35	GRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Eurofins Eaton Analytical

Job ID: 320-88009-1 Project/Site: Folder# 1002300, Job# 1000014

Laboratory: Eurofins Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date
California	S	tate	2897	01-31-23
The following analytes the agency does not o		ort, but the laboratory is r	ot certified by the governing authority.	This list may include analytes for which
are agency does not t	oner certinoation.			
Analysis Method	Prep Method	Matrix	Analyte	
o ,		Matrix Solid	Analyte Percent Moisture	

Eurofins Sacramento

6/8/2022

Page 14 of 18

Method Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

Method	Method Description	Protocol	Laboratory
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC
8290	Soxhlet Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-88009-1

Sample Summary

Client: Eurofins Eaton Analytical

Project/Site: Folder# 1002300, Job# 1000014

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 320-88009-1
 202205050002
 Solid
 04/12/22 11:50
 05/17/22 10:10

Job ID: 320-88009-1

-5

3

4

9

10

111

13

14

5

Submittal Form

Date: 5/16/2022

*REPORTING REQUIRMENTS: Do Not Combine Reports with any other samples submitted under different Folder Numbers! Report & Invoice must have the Folder# 1002300 Job # 1000014

Report all quality control data according to Method, Include dates analyzed. Date extracted (if extracted) and Meth<u>od reference on the report.</u> Results must have Complete data & QC with Approval Signature.

Eurofins Eaton Analytical, LLC 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Reports: Jackie Contreras Sub-Contracting Administrator EMAIL TO: Eaton-MonroviaSubContract@eurofinset.com Invoices to: Eurofins Eaton Analytical, LLC Phone (626) 386-1165 Fax (626) 386-1122

Specified StateCertification # and Exp Date for requested tests + matrix. Provide in each Report the

Samples from: CALIFORNIA

Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605

PWSID Static ID: Clip Code

Sample Date & Time Matrix 04/12/22 1150 DW

Sample Point ID:

Facility ID:

JLS

Dioxin/Furan - MDL and RL reporting **Analysis Requested Prep Method EPA 3510C** EPA8290 Method

Sample Event:

Client Sample ID for reference onl Site #1

202205050002

Sample ID

Sample type

Report Due:

Folder #: 1002300

05/11/2022

Fax: 916-372-7768

Phone: 916-373-5600

West Sacramento, CA 95605-1501

Test America, Inc - Sacramento

Ship To:

880 Riverside Parkway

Eaton Analytical

eurofins 😽

320-88009 Chain of Custody

1200 Time (0 (0 Time Time Time Date 5/16 Date Date Date B Sample Control Sample Control Relinquished by Relinquished by: Received by: Received by:

An Acknowledgement of Receipt is requested to attn. Jackie Contreras NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www.EurofinsUS.com/Eaton Page 1 of 1

Login Sample Receipt Checklist

Client: Eurofins Eaton Analytical Job Number: 320-88009-1

Login Number: 88009 List Source: Eurofins Sacramento

List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	False	Matrix listed on COC as DW, but sample is soil
Samples are received within Holding Time (excluding tests with immediate HTs)	False	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

_

9

11

46

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-95147-1 Client Project/Site: 1002300

For:

Eurofins Eaton Analytical 750 Royal Oaks Drive Monrovia, California 91016

Attn: Jaclyn Contreras

Authorized for release by: 5/27/2022 4:24:16 PM
Sheila Luu, Project Mgmt. Assistant Sheila.Luu@et.eurofinsus.com

Designee for

Xuan Dang, Project Manager I (714)895-5494 Xuan.Dang@et.eurofinsus.com

The Expert

Visit us at: www.eurofinsus.com/Env

.....LINKS

Review your project results through

EOL

Have a Question?

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

11

14

J.

Client: Eurofins Eaton Analytical Project/Site: 1002300

Laboratory Job ID: 570-95147-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	20
QC Sample Results	22
QC Association Summary	39
Lab Chronicle	43
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	50

3

4

R

9

10

12

. .

Definitions/Glossary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Qualifiers

-		/ B. A	0	١,	$\overline{}$	
G	ر.	IV	S	v	U	А

Qualifier

LCS and/or LCSD is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

Qualifier Description

Н Sample was prepped or analyzed beyond the specified holding time

H3 Sample was received and analyzed past holding time.

GC/MS Semi VOA

LCS and/or LCSD is outside acceptance limits, low biased.

Н Sample was prepped or analyzed beyond the specified holding time

Н3 Sample was received and analyzed past holding time.

GC Semi VOA

on
ļ

*+ LCS and/or LCSD is outside acceptance limits, high biased.

*1 LCS/LCSD RPD exceeds control limits.

Н Sample was prepped or analyzed beyond the specified holding time

Н3 Sample was received and analyzed past holding time.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

Metals

Qualifier **Qualifier Description**

Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description**

Н Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report	Abbreviation	These commonly	/ used abbreviations ma	ly or may not be	present in this report.
---	--------------	----------------	-------------------------	------------------	-------------------------

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

Eurofins Calscience

Page 3 of 50 5/27/2022

Definitions/Glossary

Job ID: 570-95147-1

Client: Eurofins Eaton Analytical Project/Site: 1002300

Glossary (Continued)

Too Numerous To Count

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins Calscience

Page 4 of 50 5/27/2022

Case Narrative

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Job ID: 570-95147-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-95147-1

Comments

No additional comments.

Receipt

The sample was received on 5/6/2022 10:15 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.9° C.

GC/MS VOA

Method 8260B: The laboratory control sample (LCS) for preparation batch 570-234601 and analytical batch 570-234588 recovered outside control limits for the following analyte: 2-Hexanone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

Method 8260B: The following sample was requested outside of holding time: 202205050002 (570-95147-1).

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-234601 and analytical batch 570-234588 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260B: The matrix spike and duplicate (MS/MSD) associated with parent sample (570-95147-C-1-C MS) and (570-95147-C-1-D MSD) were analyzed outside of the 12-hour tune window. The associated laboratory control sample and duplicate (LCS/LCSD) were analyzed within the 12-hour tune window. LCS/LCSD precision and accuracy met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270C: The following analyte(s) recovered outside control limits for the LCSD associated with preparation batch 570-233796 and analytical batch 570-235117: Benzidine. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method 8270C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-233796 and analytical batch 570-235117 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8270C: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

Method 8270C SIM: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B: The following sample was received outside of holding time: 202205050002 (570-95147-1).

Method 8081A: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

Method 8081A: The continuing calibration verification (CCV) associated with 570-234290 recovered high and outside the control limits for 4,4'-DDE on one column. Results are confirmed on both columns and reported from the passing column. The associated sample is: 202205050002 (570-95147-1).

Method 8081A: The following samples were diluted due to abundance of non-target analytes: (570-95533-A-61-B MS) and (570-95533-A-61-C MSD). Because of this dilution, the matrix spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

2

Job ID: 570-95147-1

3

4

8

9

4.0

13

14

Case Narrative

Client: Eurofins Eaton Analytical

Job ID: 570-95147-1 Project/Site: 1002300

Job ID: 570-95147-1 (Continued)

Laboratory: Eurofins Calscience (Continued)

Method 8081A: The closing continuing calibration verification (CCV) associated with batch 570-234290 recovered above the upper control limit for 4,4'-DDD, 4,4'-DDE and 4,4'-DDT. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: 202205050002 (570-95147-1).

Method 8082: The following sample was prepared outside of preparation holding time: 202205050002 (570-95147-1).

Method 8151A: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 570-234174 and analytical batch 570-235557 recovered outside control limits for the following analytes: 2,4,5-T, 2,4-DB, Dichlorprop, Dinoseb, MCPA, MCPP and 2,4,5-TP

Method 8151A: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 570-234174 and analytical batch 570-235557 recovered outside control limits for the following analytes: 2,4,5-T and 2,4-DB. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of Selenium for preparation batch 570-233806 and analytical batch 570-235048 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of Silver, Arsenic, Cadmium, Copper, Molybdenum, Lead, Antimony, Thallium and Zinc for preparation batch 570-236024 and analytical batch 570-236320 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 7471A: The following sample was analyzed outside of analytical holding time due to an error in sample queue scheduling: 202205050002 (570-95147-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 1664A: The following sample was prepared outside of preparation holding time per change order: 202205050002 (570-95147-1).

Method 8151A: The following sample was received outside of holding time: 202205050002 (570-95147-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Client Sample ID: 202205050002

Lab Sample ID: 570-95147-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Diesel Range Organics [C10-C28]	3.7	J H H3	4.8	3.7	mg/Kg		8015B	Total/NA
TPH as Motor Oil (C17-C44)	20	J H H3	24	11	mg/Kg	1	8015B	Total/NA
Arsenic	6.38		2.96	1.37	mg/Kg	5	6010B	Total/NA
Barium	117		2.96	0.140	mg/Kg	5	6010B	Total/NA
Beryllium	0.567		0.493	0.0680	mg/Kg	5	6010B	Total/NA
Cadmium	0.209	J	0.493	0.0818	mg/Kg	5	6010B	Total/NA
Chromium	16.8		0.985	0.183	mg/Kg	5	6010B	Total/NA
Cobalt	7.11		0.985	0.203	mg/Kg	5	6010B	Total/NA
Copper	22.6		1.97	0.944	mg/Kg	5	6010B	Total/NA
Lead	6.69		1.97	0.403	mg/Kg	5	6010B	Total/NA
Molybdenum	0.320	J	1.97	0.186	mg/Kg	5	6010B	Total/NA
Nickel	17.4		1.97	0.357	mg/Kg	5	6010B	Total/NA
Vanadium	35.3		0.985	0.166	mg/Kg	5	6010B	Total/NA
Zinc	54.1		4.93	1.14	mg/Kg	5	6010B	Total/NA
Mercury	0.0535	JH	0.0801	0.0130	mg/Kg	1	7471A	Total/NA
HEM: Oil and Grease	53.1	Н	49.8	30.0	mg/Kg	1	1664A	Total/NA
HEM-SGT: Oil and Grease	29.9	JH	49.8	13.8	ma/Ka	1	1664A	Total/NA

This Detection Summary does not include radiochemical test results.

3

4

6

8

9

12

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Received: 05/06/22 10:15 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1,2-Tetrachloroethane ND Н Н3 0.98 0.29 05/17/22 01:41 05/17/22 03:10 ug/Kg 0.98 1.1.1-Trichloroethane ND HH3 0.23 ug/Kg 05/17/22 01:41 05/17/22 03:10 1,1,2,2-Tetrachloroethane ND HH3 2.0 0.54 ug/Kg 05/17/22 01:41 05/17/22 03:10 1,1,2-Trichloro-1,2,2-trifluoroethane ND H H3 9.8 0.46 05/17/22 01:41 05/17/22 03:10 ug/Kg 1.1.2-Trichloroethane H H3 0.98 05/17/22 01:41 05/17/22 03:10 ND 0.46 ug/Kg 1 1-Dichloroethane ND HH3 0.98 0.28 ug/Kg 05/17/22 01:41 05/17/22 03:10 1,1-Dichloroethene Н Н3 0.98 05/17/22 01:41 05/17/22 03:10 ND 0.26 ug/Kg Н Н3 05/17/22 01:41 05/17/22 03:10 1,1-Dichloropropene ND 20 0.38 ug/Kg 1 1,2,3-Trichlorobenzene ND Н Н3 2.0 0.98 ug/Kg 05/17/22 01:41 05/17/22 03:10 1,2,3-Trichloropropane ND Н Н3 2.0 0.41 05/17/22 01:41 05/17/22 03:10 1 ug/Kg 1,2,4-Trichlorobenzene ND Н Н3 2.0 0.40 05/17/22 01:41 05/17/22 03:10 ug/Kg 1,2,4-Trimethylbenzene ND HH3 2.0 0.59 05/17/22 01:41 05/17/22 03:10 1 ug/Kg 1,2-Dibromo-3-Chloropropane ND н нз 9.8 6.7 ug/Kg 05/17/22 01:41 05/17/22 03:10 1,2-Dibromoethane ND Н Н3 0.98 05/17/22 01:41 05/17/22 03:10 0.20 ug/Kg ND HH3 0.98 0.25 05/17/22 01:41 05/17/22 03:10 1.2-Dichlorobenzene ug/Kg 1,2-Dichloroethane ND Н Н3 0.98 0.27 ua/Ka 05/17/22 01:41 05/17/22 03:10 1,2-Dichloropropane ND H H3 0.98 0.27 05/17/22 01:41 05/17/22 03:10 ug/Kg 1,3,5-Trimethylbenzene Н Н3 2.0 0.26 05/17/22 01:41 05/17/22 03:10 ND ug/Kg 05/17/22 01:41 05/17/22 03:10 1.3-Dichlorobenzene H H3 0.98 ND 0.25 ug/Kg 1,3-Dichloropropane ND Н Н3 0.98 0.29 ug/Kg 05/17/22 01:41 05/17/22 03:10 ND HH3 0.98 05/17/22 01:41 05/17/22 03:10 1,4-Dichlorobenzene 0.30 ug/Kg 2,2-Dichloropropane ND Н Н3 4.9 0.27 05/17/22 01:41 05/17/22 03:10 ug/Kg ND HH3 05/17/22 01:41 05/17/22 03:10 2-Butanone 20 4.4 ug/Kg 2-Chlorotoluene ND Н Н3 0.98 0.25 ug/Kg 05/17/22 01:41 05/17/22 03:10 2-Hexanone ND HH3 20 3.0 05/17/22 01:41 05/17/22 03:10 ug/Kg 4-Chlorotoluene ND H H3 0.98 0.24 ug/Kg 05/17/22 01:41 05/17/22 03:10 4-Methyl-2-pentanone ND H H3 20 2.9 ug/Kg 05/17/22 01:41 05/17/22 03:10 Acetone ND H H3 F1 20 9.7 ug/Kg 05/17/22 01:41 05/17/22 03:10 Benzene ND HH3 0.98 0.25 ug/Kg 05/17/22 01:41 05/17/22 03:10 Bromobenzene ND HH3 0.98 0.21 ug/Kg 05/17/22 01:41 05/17/22 03:10 Bromochloromethane ND H H3 2.0 0.44 ug/Kg 05/17/22 01:41 05/17/22 03:10 Bromodichloromethane ND HH3 0.98 05/17/22 01:41 05/17/22 03:10 0.32 ug/Kg **Bromoform** ND HH3 05/17/22 01:41 05/17/22 03:10 4.9 1.3 ug/Kg 6.5 **Bromomethane** NΠ H H3 20 ug/Kg 05/17/22 01:41 05/17/22 03:10 cis-1,2-Dichloroethene ND Н Н3 0.98 0.33 05/17/22 01:41 05/17/22 03:10 ug/Kg cis-1.3-Dichloropropene Н Н3 0.98 05/17/22 01:41 05/17/22 03:10 ND 0.34 ug/Kg Carbon disulfide ND H H3 9.8 0.39 ug/Kg 05/17/22 01:41 05/17/22 03:10 Carbon tetrachloride ND HH3 0.98 0.29 ug/Kg 05/17/22 01:41 05/17/22 03:10 Chlorobenzene ND H H3 0.98 0.26 ug/Kg 05/17/22 01:41 05/17/22 03:10 Chloroethane ND H H3 2.0 0.73 ug/Kg 05/17/22 01:41 05/17/22 03:10 Chloroform ND HH3 0.98 0.58 ug/Kg 05/17/22 01:41 05/17/22 03:10 Chloromethane ND HH3 20 1.5 ug/Kg 05/17/22 01:41 05/17/22 03:10 Dibromochloromethane Н НЗ 20 0.27 05/17/22 01:41 05/17/22 03:10 ND ug/Kg Dibromomethane 05/17/22 01:41 05/17/22 03:10 ND H H3 0.98 0.30 ug/Kg Dichlorodifluoromethane ND HH3 20 0.45 ug/Kg 05/17/22 01:41 05/17/22 03:10 Di-isopropyl ether (DIPE) ND HH3 0.98 05/17/22 01:41 05/17/22 03:10 0.49 ug/Kg Ethanol ND HH3 250 ug/Kg 05/17/22 01:41 05/17/22 03:10 65 Ethylbenzene ND HH3 0.98 0.20 ug/Kg 05/17/22 01:41 05/17/22 03:10 Ethyl-t-butyl ether (ETBE) ND HH3 0.98 0.23 ug/Kg 05/17/22 01:41 05/17/22 03:10

Eurofins Calscience

6

Page 8 of 50 5/27/2022

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Date Received: 05/06/22 10 Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ND		0.98	0.27			05/17/22 01:41	05/17/22 03:10	DII Fac
Isopropylbenzene					ug/Kg				l 4
Methylene Chloride	ND	H H3	9.8	3.1	ug/Kg		05/17/22 01:41	05/17/22 03:10	
Methyl-t-Butyl Ether (MTBE)	ND	H H3	2.0	0.18	ug/Kg		05/17/22 01:41		1
Naphthalene	ND	H H3	9.8	5.1	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
n-Butylbenzene	ND	H H3	0.98	0.21	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
N-Propylbenzene	ND	H H3	2.0	0.26	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
o-Xylene	ND	H H3	0.98	0.25	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
m,p-Xylene	ND	н нз	2.0	0.47	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
p-Isopropyltoluene	ND	H H3	0.98	0.28	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
sec-Butylbenzene	ND	н нз	0.98	0.27	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Styrene	ND	H H3	0.98	0.31	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
trans-1,2-Dichloroethene	ND	H H3	0.98	0.30	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
trans-1,3-Dichloropropene	ND	H H3	2.0	0.28	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Tert-amyl-methyl ether (TAME)	ND	H H3	0.98	0.19	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
tert-Butyl alcohol (TBA)	ND	H H3	20	6.9	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
tert-Butylbenzene	ND	H H3	0.98	0.25	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Tetrachloroethene	ND	H H3	0.98	0.22	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Toluene	ND	H H3	0.98	0.26	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Trichloroethene	ND	H H3	2.0	0.38	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Trichlorofluoromethane	ND	H H3	9.8	0.27	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Vinyl acetate	ND	H H3 F1	9.8	3.9	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Vinyl chloride	ND	н нз	0.98	0.37	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Xylenes, Total	ND	Н НЗ	2.0	0.59	ug/Kg		05/17/22 01:41	05/17/22 03:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.0. Districtions of the same of 4.00 cms)							05/47/00 04 44	05/47/00 00 40	

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		64 - 141	05/17/22 01:41	05/17/22 03:10	1
4-Bromofluorobenzene (Surr)	97		76 - 120	05/17/22 01:41	05/17/22 03:10	1
Dibromofluoromethane (Surr)	98		47 - 142	05/17/22 01:41	05/17/22 03:10	1
Toluene-d8 (Surr)	100		80 - 120	05/17/22 01:41	05/17/22 03:10	1

5/27/2022

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C SIM - PAHs (GC/MS SIM)

Client Sample ID: 20220505000 Date Collected: 04/12/22 11:50	2						Lab San	nple ID: 570-9 Matrix	95147-1 x: Solid			
Date Received: 05/06/22 10:15 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1-Methylnaphthalene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
2-Methylnaphthalene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Acenaphthene	ND	H H3	0.020	0.013	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Acenaphthylene	ND	H H3	0.020	0.0097	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Anthracene	ND	H H3	0.020	0.0089	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Benzo[g,h,i]perylene	ND	н нз	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Benzo[k]fluoranthene	ND	Н НЗ	0.020	0.0075	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Benzo[a]anthracene	ND	H H3	0.020	0.0080	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Benzo[a]pyrene	ND	н нз	0.020	0.0082	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Benzo[b]fluoranthene	ND	H H3	0.020	0.015	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Chrysene	ND	н нз	0.020	0.0065	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Dibenz(a,h)anthracene	ND	H H3	0.020	0.011	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Fluoranthene	ND	Н НЗ	0.020	0.0080	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Fluorene	ND	H H3	0.020	0.0097	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Indeno[1,2,3-cd]pyrene	ND	н нз	0.020	0.012	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Naphthalene	ND	Н НЗ	0.020	0.0090	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Phenanthrene	ND	н нз	0.020	0.015	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Pyrene	ND	H H3	0.020	0.0087	mg/Kg		05/25/22 08:49	05/26/22 20:46	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
2-Fluorobiphenyl (Surr)	55		22 - 130				05/25/22 08:49	05/26/22 20:46	1			
Nitrobenzene-d5 (Surr)	52		20 - 145				05/25/22 08:49	05/26/22 20:46	1			
p-Terphenyl-d14 (Surr)	58		33 - 147				05/25/22 08:49	05/26/22 20:46	1			

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Date Received: 05/06/22 10:15 RL MDL Unit D Dil Fac Analyte Result Qualifier Prepared Analyzed Acenaphthene ND Н Н3 0.50 0.054 mg/Kg 05/12/22 15:08 05/18/22 15:30 0.50 Acenaphthylene ND HH3 0.096 mg/Kg 05/12/22 15:08 05/18/22 15:30 Aniline ND HH3 0.50 0.12 mg/Kg 05/12/22 15:08 05/18/22 15:30 Anthracene ND H H3 0.50 0.051 mg/Kg 05/12/22 15:08 05/18/22 15:30 Azobenzene H H3 0.50 mg/Kg 05/12/22 15:08 05/18/22 15:30 ND 0.11 Benzidine ND H H3 *-5.0 mg/Kg 05/12/22 15:08 05/18/22 15:30 1.4 Benzo[a]anthracene Н Н3 0.50 0.046 05/12/22 15:08 05/18/22 15:30 ND mg/Kg ND Н Н3 0.50 0.077 05/12/22 15:08 05/18/22 15:30 Benzo[a]pyrene mg/Kg Benzo[b]fluoranthene ND Н Н3 0.50 0.080 mg/Kg 05/12/22 15:08 05/18/22 15:30 Benzo[g,h,i]perylene ND Н Н3 0.50 0.084 mg/Kg 05/12/22 15:08 05/18/22 15:30 Benzoic acid ND Н Н3 2.5 1.6 mg/Kg 05/12/22 15:08 05/18/22 15:30 Benzo[k]fluoranthene ND HH3 0.50 0.094 mg/Kg 05/12/22 15:08 05/18/22 15:30 1 Benzyl alcohol ND H H3 0.50 0.085 mg/Kg 05/12/22 15:08 05/18/22 15:30 Bis(2-chloroethoxy)methane ND HH3 0.50 0.062 mg/Kg 05/12/22 15:08 05/18/22 15:30 Bis(2-chloroethyl)ether ND HH3 2.5 0.10 mg/Kg 05/12/22 15:08 05/18/22 15:30 bis (2-Chloroisopropyl) ether ND H H3 0.50 0.060 mg/Kg 05/12/22 15:08 05/18/22 15:30 Bis(2-ethylhexyl) phthalate ND н нз 0.50 0.25 mg/Kg 05/12/22 15:08 05/18/22 15:30 4-Bromophenyl phenyl ether ND Н Н3 0.50 0.059 mg/Kg 05/12/22 15:08 05/18/22 15:30 0.22 mg/Kg Butyl benzyl phthalate ND H H3 0.50 05/12/22 15:08 05/18/22 15:30 4-Chloroaniline ND Н Н3 0.50 0.073 mg/Kg 05/12/22 15:08 05/18/22 15:30 4-Chloro-3-methylphenol ND HH3 0.50 0.084 mg/Kg 05/12/22 15:08 05/18/22 15:30 2-Chloronaphthalene ND Н Н3 0.50 0.057 mg/Kg 05/12/22 15:08 05/18/22 15:30 ND HH3 0.50 0.099 05/12/22 15:08 05/18/22 15:30 2-Chlorophenol mg/Kg 4-Chlorophenyl phenyl ether ND H H3 0.50 0.070 mg/Kg 05/12/22 15:08 05/18/22 15:30 Chrysene ND HH3 0.50 0.068 mg/Kg 05/12/22 15:08 05/18/22 15:30 05/12/22 15:08 Dibenz(a,h)anthracene ND H H3 0.50 0.10 mg/Kg 05/18/22 15:30 Dibenzofuran ND HH3 0.50 0.094 mg/Kg 05/12/22 15:08 05/18/22 15:30 Н Н3 0.074 1,2-Dichlorobenzene ND 0.50 mg/Kg 05/12/22 15:08 05/18/22 15:30 1,3-Dichlorobenzene ND HH3 0.50 0.069 mg/Kg 05/12/22 15:08 05/18/22 15:30

0.50

2.5

0.50

0.50

0.50

0.50

0.50

0.50

2.5

2.0

0.50

0.50

0.50

0.50

0.50

0.50

0.50

1.5

0.50

0.50

0.071

0.82

0.10

0.065

0.061

0.045

0.063

0.073

0.97

1.6

0.11

0.059

0.36

0.058

0.067

0.050

0.38

0.11

mg/Kg

0.092 mg/Kg

0.091 mg/Kg

ND HH3

Н Н3

ND HH3

ND

ND HH3

1,4-Dichlorobenzene

2,4-Dichlorophenol

2,6-Dichlorophenol

2,4-Dimethylphenol

Dimethyl phthalate

Di-n-butyl phthalate

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Fluoranthene

Fluorene

Di-n-octyl phthalate

Hexachlorobenzene

Hexachloroethane

Indeno[1,2,3-cd]pyrene

Hexachloro-1,3-butadiene

Hexachlorocyclopentadiene

4,6-Dinitro-2-methylphenol

Diethyl phthalate

3,3'-Dichlorobenzidine

05/12/22 15:08 05/18/22 15:30
05/12/22 15:08 05/18/22 15:30
05/12/22 15:08 05/18/22 15:30
05/12/22 15:08 05/18/22 15:30
05/12/22 15:08 05/18/22 15:30
05/12/22 15:08 05/18/22 15:30
05/12/22 15:08 05/18/22 15:30

05/12/22 15:08 05/18/22 15:30

05/12/22 15:08 05/18/22 15:30

05/12/22 15:08 05/18/22 15:30

05/12/22 15:08 05/18/22 15:30

05/12/22 15:08 05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/18/22 15:30

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

05/12/22 15:08

Eurofins Calscience

5/27/2022

3

4

6

8

11

13

14

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Date Received: 05/06/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isophorone	ND	H H3	0.50	0.069	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
1-Methylnaphthalene	ND	H H3	0.50	0.036	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Methylnaphthalene	ND	H H3	0.50	0.057	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Methylphenol	ND	H H3	0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
3 & 4 Methylphenol	ND	H H3	1.0	0.22	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Naphthalene	ND	H H3	0.50	0.058	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Nitroaniline	ND	H H3	0.50	0.065	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
3-Nitroaniline	ND	H H3	0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
4-Nitroaniline	ND	H H3	0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Nitrobenzene	ND	H H3	2.0	0.092	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2-Nitrophenol	ND	H H3	0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
4-Nitrophenol	ND	H H3	0.50	0.17	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
N-Nitrosodimethylamine	ND	H H3	0.50	0.077	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
N-Nitrosodi-n-propylamine	ND	H H3	0.50	0.067	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
N-Nitrosodiphenylamine	ND	H H3	0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Pentachlorophenol	ND	H H3	2.5	1.0	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Phenanthrene	ND	H H3	0.50	0.061	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Phenol	ND	H H3	0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Pyrene	ND	H H3	0.50	0.075	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
Pyridine	ND	H H3	0.50	0.082	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
1,2,4-Trichlorobenzene	ND	H H3	0.50	0.089	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2,4,5-Trichlorophenol	ND	H H3	0.50	0.070	mg/Kg		05/12/22 15:08	05/18/22 15:30	1
2,4,6-Trichlorophenol	ND	H H3	0.50	0.078	mg/Kg		05/12/22 15:08	05/18/22 15:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	72		14 - 142	05/12/22 15:08	05/18/22 15:30	1
2-Fluorophenol (Surr)	68		10 - 123	05/12/22 15:08	05/18/22 15:30	1
Nitrobenzene-d5 (Surr)	72		10 - 129	05/12/22 15:08	05/18/22 15:30	1
Phenol-d6 (Surr)	70		10 - 120	05/12/22 15:08	05/18/22 15:30	1
p-Terphenyl-d14 (Surr)	81		31 - 139	05/12/22 15:08	05/18/22 15:30	1
2.4.6-Tribromophenol (Surr)	64		10 - 134	05/12/22 15:08	05/18/22 15:30	1

9

3

4

6

8

10

12

1 /

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: 2022050500 Date Collected: 04/12/22 11:50 Date Received: 05/06/22 10:15)						Lab San	nple ID: 570-9 Matrix	5147-1 :: Solid
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	3.7	J H H3	4.8	3.7	mg/Kg		05/12/22 13:37	05/14/22 03:26	1
TPH as Motor Oil (C17-C44)	20	J H H3	24	11	mg/Kg		05/12/22 13:37	05/14/22 03:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	110		60 - 138				05/12/22 13:37	05/14/22 03:26	1

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8081A - Organochlorine Pesticides (GC)

Client Sample ID: 202205 Date Collected: 04/12/22			Lab San	nple ID: 570-9 Matrix	95147-1 ix: Solid				
Date Received: 05/06/22 1		Qualifier	RL	MDL	I lmit	D	Drawarad	Amalumad	Dil Fac
Analyte 4,4'-DDD		H H3					Prepared 05/12/22 15:30	Analyzed 05/16/22 08:17	DII Fac
4,4-DDE 4.4'-DDE		п по Н Н3	5.0 5.0		ug/Kg		05/12/22 15:30		1
4.4'-DDT		п по Н Н3			ug/Kg				1
			5.0		ug/Kg		05/12/22 15:30		
Aldrin		H H3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
alpha-BHC		H H3	5.0		ug/Kg		05/12/22 15:30		1
alpha-Chlordane		H H3	5.0		ug/Kg		05/12/22 15:30		1
beta-BHC		H H3	5.0	0.90	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Chlordane	ND	H H3	25		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
delta-BHC	ND	H H3	5.0	0.93	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Dieldrin	ND	H H3	5.0	0.55	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endosulfan I	ND	H H3	5.0	1.1	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endosulfan II	ND	H H3	5.0	0.54	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endosulfan sulfate	ND	H H3	5.0	0.63	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endrin	ND	H H3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endrin aldehyde	ND	Н НЗ	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Endrin ketone	ND	H H3	5.0	0.90	ug/Kg		05/12/22 15:30	05/16/22 08:17	1
gamma-BHC	ND	H H3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
gamma-Chlordane	ND	H H3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Heptachlor	ND	Н Н3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Heptachlor epoxide	ND	H H3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Methoxychlor	ND	H H3	5.0		ug/Kg		05/12/22 15:30	05/16/22 08:17	1
Toxaphene		H H3	25		ug/Kg			05/16/22 08:17	· · · · · · · 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	80		37 - 151	05/12/22 15:30	05/16/22 08:17	1
Tetrachloro-m-xylene	75		38 - 148	05/12/22 15:30	05/16/22 08:17	1

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Date Descived: 05/00/22 40:								Width	. Joilu
Date Received: 05/06/22 10: Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1221	ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1232	ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1242	ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1248	ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1254	ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1260	ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1262	ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Aroclor-1268	ND	H H3	50	25	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Polychlorinated biphenyls, Total	ND	H H3	50	39	ug/Kg		05/12/22 15:32	05/16/22 13:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	78		20 - 155				05/12/22 15:32	05/16/22 13:23	1
Tetrachloro-m-xylene (Surr)	61		25 - 126				05/12/22 15:32	05/16/22 13:23	1

Eurofins Calscience

5/27/2022

Page 15 of 50

3

4

6

10

11

13

1 4

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8151A - Herbicides (GC)

2,4-Dichlorophenylacetic acid

Client Sample ID: 202205050002 Date Collected: 04/12/22 11:50 Date Received: 05/06/22 10:15	2						Lab San	nple ID: 570-9 Matrix	5147-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND	H H3 *+	9.9	3.7	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
2,4,5-TP (Silvex)	ND	H H3 *1	9.9	7.5	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
2,4-D	ND	Н НЗ	99	48	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
2,4-DB	ND	H H3 *+ *1	99	99	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dalapon	ND	Н НЗ	250	72	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dicamba	ND	H H3	9.9	4.7	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dichlorprop	ND	H H3 *1	99	49	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Dinoseb	ND	H H3 *1	99	58	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
MCPA	ND	H H3 *1	9900	4800	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
MCPP	ND	H H3 *1	9900	6600	ug/Kg		05/17/22 15:21	05/19/22 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

20 - 163

112

<u>05/17/22 15:21</u> <u>05/19/22 23:30</u>

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 6010B - Metals (ICP)

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1

Date Collected: 04/12/22 11:50 **Matrix: Solid**

Date Received: 05/06/22 10:15									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		9.85	8.57	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Arsenic	6.38		2.96	1.37	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Barium	117		2.96	0.140	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Beryllium	0.567		0.493	0.0680	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Cadmium	0.209	J	0.493	0.0818	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Chromium	16.8		0.985	0.183	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Cobalt	7.11		0.985	0.203	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Copper	22.6		1.97	0.944	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Lead	6.69		1.97	0.403	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Molybdenum	0.320	J	1.97	0.186	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Nickel	17.4		1.97	0.357	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Selenium	ND		3.08	1.25	mg/Kg		05/12/22 15:27	05/18/22 05:50	5
Silver	ND		1.48	0.142	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Thallium	ND		9.85	6.95	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
Vanadium	35.3		0.985	0.166	mg/Kg		05/21/22 12:45	05/23/22 14:59	5
_Zinc	54.1		4.93	1.14	mg/Kg		05/21/22 12:45	05/23/22 14:59	5

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 7471A - Mercury (CVAA)

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1 Date Collected: 04/12/22 11:50

Matrix: Solid

Date Received: 05/06/22 10:15

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Mercury 0.0535 J H 0.0801 0.0130 mg/Kg 05/12/22 16:44 05/13/22 15:19

Client Sample Results

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

General Chemistry

Client Sample ID: 202205050002 Lab Sample ID: 570-95147-1 Date Collected: 04/12/22 11:50

Matrix: Solid

Date Received: 05/06/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM: Oil and Grease	53.1	H	49.8	30.0	mg/Kg		05/13/22 11:53	05/13/22 11:53	1
HEM-SGT: Oil and Grease	29.9	J H	49.8	13.8	mg/Kg		05/13/22 11:53	05/13/22 11:53	1

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid **Prep Type: Total/NA**

		Percent Surrogate Recovery (Acceptance Limits)						
		DCA	BFB	DBFM	TOL			
Lab Sample ID	Client Sample ID	(64-141)	(76-120)	(47-142)	(80-120)			
570-95147-1	202205050002	92	97	98	100			
570-95147-1 MS	202205050002	92	95	95	96			
570-95147-1 MSD	202205050002	94	97	99	96			
LCS 570-234601/1-A	Lab Control Sample	87	97	95	94			
LCSD 570-234601/2-A	Lab Control Sample Dup	80	96	92	95			
MB 570-234601/3-A	Method Blank	85	95	94	100			
Surrogate Legend	метпод ыапк	85	95	94	100			

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)							
		FBP	2FP	NBZ	PHL6	TPHd14	TBP		
Lab Sample ID	Client Sample ID	(14-142)	(10-123)	(10-129)	(10-120)	(31-139)	(10-134)		
570-95147-1	202205050002	72	68	72	70	81	64		
LCS 570-233796/2-A	Lab Control Sample	77	74	67	76	87	79		
LCSD 570-233796/3-A	Lab Control Sample Dup	76	75	65	76	84	78		
MB 570-233796/1-A	Method Blank	82	82	79	80	92	80		

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL6 = Phenol-d6 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Method: 8270C SIM - PAHs (GC/MS SIM)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		FBP	NBZ	TPHd14				
Lab Sample ID	Client Sample ID	(22-130)	(20-145)	(33-147)				
570-95147-1	202205050002	55	52	58				
LCS 570-236468/2-A	Lab Control Sample	77	78	81				
LCSD 570-236468/3-A	Lab Control Sample Dup	75	74	74				
MB 570-236468/1-A	Method Blank	73	70	81				

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Job ID: 570-95147-1

Project/Site: 1002300

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
570-95147-1	202205050002	110	
LCS 570-233769/2-A	Lab Control Sample	112	
LCS 570-233769/6-A	Lab Control Sample	113	
LCSD 570-233769/3-A	Lab Control Sample Dup	111	
LCSD 570-233769/7-A	Lab Control Sample Dup	109	
MB 570-233769/1-A	Method Blank	109	
Surrogate Legend			
OTCSN = n-Octacosan	ie (Surr)		

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCB1	TCX1					
Lab Sample ID	Client Sample ID	(37-151)	(38-148)					
570-95147-1	202205050002	80	75					
LCS 570-233622/2-A	Lab Control Sample	96	96					
LCSD 570-233622/3-A	Lab Control Sample Dup	99	98					
MB 570-233622/1-A	Method Blank	95	93					
Surrogate Legend								

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCB1	TCX1					
Lab Sample ID	Client Sample ID	(20-155)	(25-126)					
570-95147-1	202205050002	78	61					
LCS 570-233724/2-A	Lab Control Sample	88	74					
LCSD 570-233724/3-A	Lab Control Sample Dup	104	86					
MB 570-233724/1-A	Method Blank	100	83					
Surrogate Legend								

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene (Surr)

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
Lab Sample ID	Client Sample ID	(20-163)	
570-95147-1	202205050002	112	
LCS 570-234174/2-A	Lab Control Sample	37	
LCSD 570-234174/3-A	Lab Control Sample Dup	72	
MB 570-234174/1-A	Method Blank	46	
Surrogate Legend			

Page 21 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-234601/3-A

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: Method Blank
Prep Type: Total/NA
Dron Botoby 224604

Prep	Type: Total/NA
Prep	Batch: 234601

Analysis Batch: 234588	MD	МВ						Prep Batch:	234601
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	0.29	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1,1-Trichloroethane	ND		1.0	0.23	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.54	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	0.46	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1,2-Trichloroethane	ND		1.0	0.46	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1-Dichloroethane	ND		1.0	0.28	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1-Dichloroethene	ND		1.0	0.27	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,1-Dichloropropene	ND		2.0	0.39	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2,3-Trichlorobenzene	ND		2.0	1.0	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2,3-Trichloropropane	ND		2.0	0.42	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2,4-Trichlorobenzene	ND		2.0	0.41	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2,4-Trimethylbenzene	ND		2.0	0.60	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2-Dibromo-3-Chloropropane	ND		10	6.8	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2-Dibromoethane	ND		1.0	0.21	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2-Dichlorobenzene	ND		1.0	0.25	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2-Dichloroethane	ND		1.0	0.28	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,2-Dichloropropane	ND		1.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,3,5-Trimethylbenzene	ND		2.0	0.27	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,3-Dichlorobenzene	ND		1.0	0.25	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,3-Dichloropropane	ND		1.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
1,4-Dichlorobenzene	ND		1.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
2,2-Dichloropropane	ND		5.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
2-Butanone	ND		20		ug/Kg			05/17/22 02:44	1
2-Chlorotoluene	ND		1.0		ug/Kg			05/17/22 02:44	1
2-Hexanone	ND		20		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
4-Chlorotoluene	ND		1.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
4-Methyl-2-pentanone	ND		20		ug/Kg			05/17/22 02:44	1
Acetone	ND		20		ug/Kg			05/17/22 02:44	1
Benzene	ND		1.0		ug/Kg			05/17/22 02:44	1
Bromobenzene	ND		1.0		ug/Kg			05/17/22 02:44	1
Bromochloromethane	ND		2.0		ug/Kg			05/17/22 02:44	1
Bromodichloromethane	ND		1.0		ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Bromoform	ND		5.0		ug/Kg			05/17/22 02:44	1
Bromomethane	ND		20		ug/Kg			05/17/22 02:44	1
cis-1,2-Dichloroethene	ND		1.0		ug/Kg			05/17/22 02:44	1
cis-1,3-Dichloropropene	ND		1.0		ug/Kg			05/17/22 02:44	1
Carbon disulfide	ND		10		ug/Kg			05/17/22 02:44	1
Carbon tetrachloride	ND		1.0		ug/Kg			05/17/22 02:44	1
Chlorobenzene	ND		1.0		ug/Kg			05/17/22 02:44	1
Chloroethane	ND		2.0		ug/Kg			05/17/22 02:44	1
Chloroform	ND		1.0		ug/Kg			05/17/22 02:44	1
Chloromethane	ND		20		ug/Kg			05/17/22 02:44	1
Dibromochloromethane	ND		2.0		ug/Kg			05/17/22 02:44	1
Dibromomethane	ND		1.0		ug/Kg			05/17/22 02:44	1
Dichlorodifluoromethane	ND		2.0		ug/Kg			05/17/22 02:44	1
Di-isopropyl ether (DIPE)	ND		1.0		ug/Kg			05/17/22 02:44	
Ethanol	ND ND		250		ug/Kg ug/Kg			05/17/22 02:44	1
Ethylbenzene	ND		1.0		ug/Kg ug/Kg			05/17/22 02:44	1

Eurofins Calscience

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 570-234601/3-A

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 234601

7 many one Buttonn Be 1000								op Datom 20 100 .	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethyl-t-butyl ether (ETBE)	ND		1.0	0.24	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Isopropylbenzene	ND		1.0	0.28	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Methylene Chloride	ND		10	3.1	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Methyl-t-Butyl Ether (MTBE)	ND		2.0	0.19	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Naphthalene	ND		10	5.2	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
n-Butylbenzene	ND		1.0	0.21	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
N-Propylbenzene	ND		2.0	0.26	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
o-Xylene	ND		1.0	0.26	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
m,p-Xylene	ND		2.0	0.47	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
p-Isopropyltoluene	ND		1.0	0.28	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
sec-Butylbenzene	ND		1.0	0.27	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Styrene	ND		1.0	0.32	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
trans-1,2-Dichloroethene	ND		1.0	0.30	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
trans-1,3-Dichloropropene	ND		2.0	0.28	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Tert-amyl-methyl ether (TAME)	ND		1.0	0.19	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
tert-Butyl alcohol (TBA)	ND		20	7.0	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
tert-Butylbenzene	ND		1.0	0.25	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Tetrachloroethene	ND		1.0	0.22	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Toluene	ND		1.0	0.27	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Trichloroethene	ND		2.0	0.39	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Trichlorofluoromethane	ND		10	0.27	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Vinyl acetate	ND		10	3.9	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Vinyl chloride	ND		1.0	0.38	ug/Kg		05/16/22 22:40	05/17/22 02:44	1
Xylenes, Total	ND		2.0	0.60	ug/Kg		05/16/22 22:40	05/17/22 02:44	1

MB	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		64 - 141	05/16/22 22:40	05/17/22 02:44	1
4-Bromofluorobenzene (Surr)	95		76 - 120	05/16/22 22:40	05/17/22 02:44	1
Dibromofluoromethane (Surr)	94		47 - 142	05/16/22 22:40	05/17/22 02:44	1
Toluene-d8 (Surr)	100		80 - 120	05/16/22 22:40	05/17/22 02:44	1

Lab Sample ID: LCS 570-234601/1-A

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: Lab Control Sa	Sample
----------------------------------	--------

Prep Type: Total/NA

Prep Batch: 234601

Alialysis Dalcii. 234300							Fieb Datcii. 23400 i
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	49.7	48.79		ug/Kg		98	70 - 131
1,2-Dibromoethane	49.7	57.58		ug/Kg		116	80 - 120
1,2-Dichlorobenzene	49.7	55.34		ug/Kg		111	80 - 120
1,2-Dichloroethane	49.7	49.60		ug/Kg		100	80 - 120
Benzene	49.7	53.09		ug/Kg		107	80 - 120
Carbon tetrachloride	49.7	52.15		ug/Kg		105	80 - 131
Chlorobenzene	49.7	53.25		ug/Kg		107	80 - 120
Di-isopropyl ether (DIPE)	49.7	54.63		ug/Kg		110	77 - 130
Ethanol	497	447.3		ug/Kg		90	66 - 129
Ethylbenzene	49.7	52.01		ug/Kg		105	80 - 120
Ethyl-t-butyl ether (ETBE)	49.7	54.27		ug/Kg		109	80 - 135
Methyl-t-Butyl Ether (MTBE)	49.7	54.07		ug/Kg		109	80 - 122

Eurofins Calscience

Page 23 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-234601/1-A

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 234601 %Rec

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	49.7	52.41		ug/Kg		105	80 - 120	
m,p-Xylene	99.4	101.9		ug/Kg		102	80 - 120	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 87 64 - 141 4-Bromofluorobenzene (Surr) 97 76 - 120 Dibromofluoromethane (Surr) 47 - 142 95 Toluene-d8 (Surr) 94 80 - 120

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 570-234601/2-A **Matrix: Solid**

Analysis Batch: 234588

Prep Type: Total/NA

Prep Batch: 234601

Allalysis Datcii. 254500						riep Daten. 20400			
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	50.1	47.64		ug/Kg		95	70 - 131	2	20
1,2-Dibromoethane	50.1	56.37		ug/Kg		113	80 - 120	2	20
1,2-Dichlorobenzene	50.1	54.42		ug/Kg		109	80 - 120	2	20
1,2-Dichloroethane	50.1	46.13		ug/Kg		92	80 - 120	7	20
Benzene	50.1	54.69		ug/Kg		109	80 - 120	3	20
Carbon tetrachloride	50.1	50.32		ug/Kg		100	80 - 131	4	20
Chlorobenzene	50.1	53.62		ug/Kg		107	80 - 120	1	20
Di-isopropyl ether (DIPE)	50.1	52.69		ug/Kg		105	77 - 130	4	20
Ethanol	501	450.1		ug/Kg		90	66 - 129	1	22
Ethylbenzene	50.1	53.16		ug/Kg		106	80 - 120	2	20
Ethyl-t-butyl ether (ETBE)	50.1	52.43		ug/Kg		105	80 - 135	3	20
Methyl-t-Butyl Ether (MTBE)	50.1	50.05		ug/Kg		100	80 - 122	8	20
o-Xylene	50.1	54.89		ug/Kg		110	80 - 120	5	20
m,p-Xylene	100	107.8		ug/Kg		108	80 - 120	6	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		64 - 141
4-Bromofluorobenzene (Surr)	96		76 - 120
Dibromofluoromethane (Surr)	92		47 - 142
Toluene-d8 (Surr)	95		80 - 120

Lab Sample ID: 570-95147-1 MS Client Sample ID: 202205050002 **Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 234588 Prep Batch: 234601** Sample Sample Spike

	Sample	Sample	Spike	IVIO	IVIO				70Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND	H H3	49.6	43.02		ug/Kg		87	60 - 125	
1,2-Dibromoethane	ND	H H3	49.6	44.17		ug/Kg		89	65 - 125	
1,2-Dichlorobenzene	ND	H H3	49.6	34.07		ug/Kg		69	47 - 130	
1,2-Dichloroethane	ND	н нз	49.6	40.90		ug/Kg		82	66 - 127	
Benzene	ND	H H3	49.6	45.01		ug/Kg		91	70 - 125	
Carbon tetrachloride	ND	H H3	49.6	45.35		ug/Kg		91	60 - 130	
Chlorobenzene	ND	Н НЗ	49.6	40.50		ug/Kg		82	65 - 125	
Di-isopropyl ether (DIPE)	ND	H H3	49.6	47.33		ug/Kg		95	62 - 125	

Eurofins Calscience

5/27/2022

Page 24 of 50

Project/Site: 1002300

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 570-95147-1 MS

Matrix: Solid

Analysis Batch: 234588

Client Sample ID: 202205050002

Prep Type: Total/NA

Prep Batch: 234601

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND	H H3	496	300.9		ug/Kg		61	21 - 168	
Ethylbenzene	ND	Н НЗ	49.6	40.95		ug/Kg		83	64 - 125	
Ethyl-t-butyl ether (ETBE)	ND	н нз	49.6	46.57		ug/Kg		94	61 - 125	
Methyl-t-Butyl Ether (MTBE)	ND	H H3	49.6	45.57		ug/Kg		92	61 - 125	
o-Xylene	ND	Н НЗ	49.6	40.87		ug/Kg		82	59 - 128	
m,p-Xylene	ND	H H3	99.2	81.63		ug/Kg		82	60 - 125	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		64 - 141
4-Bromofluorobenzene (Surr)	95		76 - 120
Dibromofluoromethane (Surr)	95		47 - 142
Toluene-d8 (Surr)	96		80 - 120

Client Sample ID: 202205050002

Prep Type: Total/NA Pren Batch: 234601

Lab Sample ID: 570-95147-1 MSD

Matrix: Solid

Analysis Batch: 234588

Analysis Batch: 234588									Prep Ba	itcn: 23	4601
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	H H3	50.5	40.71		ug/Kg		81	60 - 125	6	20
1,2-Dibromoethane	ND	H H3	50.5	42.17		ug/Kg		83	65 - 125	5	21
1,2-Dichlorobenzene	ND	H H3	50.5	33.77		ug/Kg		67	47 - 130	1	29
1,2-Dichloroethane	ND	н нз	50.5	40.92		ug/Kg		81	66 - 127	0	20
Benzene	ND	H H3	50.5	42.82		ug/Kg		85	70 - 125	5	20
Carbon tetrachloride	ND	H H3	50.5	46.28		ug/Kg		92	60 - 130	2	20
Chlorobenzene	ND	H H3	50.5	38.22		ug/Kg		76	65 - 125	6	22
Di-isopropyl ether (DIPE)	ND	H H3	50.5	46.58		ug/Kg		92	62 - 125	2	20
Ethanol	ND	H H3	505	326.9		ug/Kg		65	21 - 168	8	40
Ethylbenzene	ND	н нз	50.5	37.97		ug/Kg		75	64 - 125	8	22
Ethyl-t-butyl ether (ETBE)	ND	H H3	50.5	45.84		ug/Kg		91	61 - 125	2	20
Methyl-t-Butyl Ether (MTBE)	ND	H H3	50.5	45.44		ug/Kg		90	61 - 125	0	20
o-Xylene	ND	H H3	50.5	38.52		ug/Kg		76	59 - 128	6	24
m,p-Xylene	ND	H H3	101	76.65		ug/Kg		76	60 - 125	6	24

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		64 - 141
4-Bromofluorobenzene (Surr)	97		76 - 120
Dibromofluoromethane (Surr)	99		47 - 142
Toluene-d8 (Surr)	96		80 - 120

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-233796/1-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 233796

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.50	0.054	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Acenaphthylene	ND		0.50	0.096	ma/Ka		05/12/22 15:08	05/18/22 13:54	1

Eurofins Calscience

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 570-233796/1-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 233796

	МВ	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aniline	ND		0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Anthracene	ND		0.50	0.051	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Azobenzene	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzidine	ND		5.0	1.4	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[a]anthracene	ND		0.50	0.046	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[a]pyrene	ND		0.50	0.076	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[b]fluoranthene	ND		0.50	0.080	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[g,h,i]perylene	ND		0.50	0.083	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzoic acid	ND		2.5	1.6	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzo[k]fluoranthene	ND		0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Benzyl alcohol	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Bis(2-chloroethoxy)methane	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Bis(2-chloroethyl)ether	ND		2.5		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
bis (2-Chloroisopropyl) ether	ND		0.50		mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Bis(2-ethylhexyl) phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
4-Bromophenyl phenyl ether	ND		0.50		mg/Kg			05/18/22 13:54	1
Butyl benzyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
4-Chloroaniline	ND		0.50		mg/Kg			05/18/22 13:54	1
4-Chloro-3-methylphenol	ND		0.50		mg/Kg			05/18/22 13:54	1
2-Chloronaphthalene	ND		0.50		mg/Kg			05/18/22 13:54	· · · · · · · · · · · · · · · · · · ·
2-Chlorophenol	ND		0.50		mg/Kg			05/18/22 13:54	1
4-Chlorophenyl phenyl ether	ND		0.50		mg/Kg			05/18/22 13:54	1
Chrysene	ND		0.50		mg/Kg			05/18/22 13:54	
Dibenz(a,h)anthracene	ND		0.50		mg/Kg			05/18/22 13:54	1
Dibenzofuran	ND ND		0.50		mg/Kg			05/18/22 13:54	1
	ND ND		0.50					05/18/22 13:54	
1,2-Dichlorobenzene					mg/Kg				
1,3-Dichlorobenzene	ND		0.50		mg/Kg			05/18/22 13:54	1
1,4-Dichlorobenzene	ND		0.50	0.071	mg/Kg			05/18/22 13:54	1
3,3'-Dichlorobenzidine	ND		2.5	0.81	mg/Kg			05/18/22 13:54	1
2,4-Dichlorophenol	ND		0.50		mg/Kg			05/18/22 13:54	1
2,6-Dichlorophenol	ND		0.50		mg/Kg			05/18/22 13:54	1
Diethyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
2,4-Dimethylphenol	ND		0.50		mg/Kg			05/18/22 13:54	1
Dimethyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
Di-n-butyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
4,6-Dinitro-2-methylphenol	ND		2.5		mg/Kg			05/18/22 13:54	1
2,4-Dinitrophenol	ND		2.0		mg/Kg			05/18/22 13:54	1
2,4-Dinitrotoluene	ND		0.50		mg/Kg			05/18/22 13:54	1
2,6-Dinitrotoluene	ND		0.50		mg/Kg			05/18/22 13:54	1
Di-n-octyl phthalate	ND		0.50		mg/Kg			05/18/22 13:54	1
Fluoranthene	ND		0.50	0.058	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Fluorene	ND		0.50	0.067	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Hexachlorobenzene	ND		0.50	0.092	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Hexachloro-1,3-butadiene	ND		0.50	0.050	mg/Kg			05/18/22 13:54	1
Hexachlorocyclopentadiene	ND		1.5	0.38	mg/Kg			05/18/22 13:54	1
Hexachloroethane	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Indeno[1,2,3-cd]pyrene	ND		0.50	0.090	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Isophorone	ND		0.50	0.068	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
1-Methylnaphthalene	ND		0.50	0.036	mg/Kg		05/12/22 15:08	05/18/22 13:54	1

Eurofins Calscience

Page 26 of 50

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 570-233796/1-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 233796

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.50	0.057	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2-Methylphenol	ND		0.50	0.094	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
3 & 4 Methylphenol	ND		1.0	0.22	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Naphthalene	ND		0.50	0.058	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2-Nitroaniline	ND		0.50	0.065	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
3-Nitroaniline	ND		0.50	0.12	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
4-Nitroaniline	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Nitrobenzene	ND		2.0	0.092	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2-Nitrophenol	ND		0.50	0.11	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
4-Nitrophenol	ND		0.50	0.17	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
N-Nitrosodimethylamine	ND		0.50	0.077	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
N-Nitrosodi-n-propylamine	ND		0.50	0.067	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
N-Nitrosodiphenylamine	ND		0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Pentachlorophenol	ND		2.5	1.0	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Phenanthrene	ND		0.50	0.061	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Phenol	ND		0.50	0.095	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Pyrene	ND		0.50	0.075	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
Pyridine	ND		0.50	0.082	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
1,2,4-Trichlorobenzene	ND		0.50	0.089	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2,4,5-Trichlorophenol	ND		0.50	0.070	mg/Kg		05/12/22 15:08	05/18/22 13:54	1
2,4,6-Trichlorophenol	ND		0.50	0.078	mg/Kg		05/12/22 15:08	05/18/22 13:54	1

MB MB

		_					
Surrogate	%Recovery Qu	ualifier Limits	S	Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	82	14 - 14	42	05/12/22 15:08	05/18/22 13:54	1	
2-Fluorophenol (Surr)	82	10 - 12	23	05/12/22 15:08	05/18/22 13:54	1	
Nitrobenzene-d5 (Surr)	79	10 - 12	29	05/12/22 15:08	05/18/22 13:54	1	
Phenol-d6 (Surr)	80	10 - 12	20	05/12/22 15:08	05/18/22 13:54	1	
p-Terphenyl-d14 (Surr)	92	31 - 13	39	05/12/22 15:08	05/18/22 13:54	1	
2,4,6-Tribromophenol (Surr)	80	10 - 13	34	05/12/22 15:08	05/18/22 13:54	1	

Lab Sample ID: LCS 570-233796/2-A

Matrix: Solid

Analysis Batch: 235117

Client Sample	ID: I	Lab	Cont	trol	Samp	ole
		Prer	Tyn	e: T	Total/N	A

Prep Batch: 233796

Analysis Baton. 200111	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	5.00	4.544		mg/Kg		91	71 - 120
Acenaphthylene	5.00	4.977		mg/Kg		100	77 - 125
Butyl benzyl phthalate	5.00	4.614		mg/Kg		92	58 - 120
4-Chloro-3-methylphenol	5.00	3.883		mg/Kg		78	54 - 120
2-Chlorophenol	5.00	4.173		mg/Kg		83	65 - 121
1,4-Dichlorobenzene	5.00	3.870		mg/Kg		77	64 - 120
Dimethyl phthalate	5.00	4.453		mg/Kg		89	58 - 120
2,4-Dinitrotoluene	5.00	4.586		mg/Kg		92	64 - 120
Fluorene	5.00	4.805		mg/Kg		96	72 - 120
Naphthalene	5.00	3.849		mg/Kg		77	60 - 120
4-Nitrophenol	5.00	4.341		mg/Kg		87	52 - 121
N-Nitrosodi-n-propylamine	5.00	4.298		mg/Kg		86	61 - 123
Pentachlorophenol	5.00	2.885		ma/Ka		58	27 - 120

Eurofins Calscience

Page 27 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-233796/2-A

Lab Sample ID: LCSD 570-233796/3-A

Matrix: Solid

Analysis Batch: 235117

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 233796

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenol	5.00	4.116		mg/Kg		82	61 - 127	
Pyrene	5.00	4.751		mg/Kg		95	70 - 124	
1 2 4-Trichlorobenzene	5.00	3 614		ma/Ka		72	59 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	77		14 - 142
2-Fluorophenol (Surr)	74		10 - 123
Nitrobenzene-d5 (Surr)	67		10 - 129
Phenol-d6 (Surr)	76		10 - 120
p-Terphenyl-d14 (Surr)	87		31 - 139
2,4,6-Tribromophenol (Surr)	79		10 - 134

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 235117							Prep Ba	atch: 23	33796
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	5.00	4.583		mg/Kg		92	71 - 120	1	20
Acenaphthylene	5.00	4.974		mg/Kg		99	77 - 125	0	20
Butyl benzyl phthalate	5.00	4.469		mg/Kg		89	58 - 120	3	20
4-Chloro-3-methylphenol	5.00	3.768		mg/Kg		75	54 - 120	3	20
2-Chlorophenol	5.00	4.151		mg/Kg		83	65 - 121	1	20
1,4-Dichlorobenzene	5.00	3.844		mg/Kg		77	64 - 120	1	20
Dimethyl phthalate	5.00	4.392		mg/Kg		88	58 - 120	1	20
2,4-Dinitrotoluene	5.00	4.567		mg/Kg		91	64 - 120	0	20
Fluorene	5.00	4.770		mg/Kg		95	72 - 120	1	20
Naphthalene	5.00	3.732		mg/Kg		75	60 - 120	3	20
4-Nitrophenol	5.00	4.389		mg/Kg		88	52 - 121	1	20
N-Nitrosodi-n-propylamine	5.00	4.376		mg/Kg		88	61 - 123	2	20
Pentachlorophenol	5.00	2.919		mg/Kg		58	27 - 120	1	20
Phenol	5.00	4.210		mg/Kg		84	61 - 127	2	20
Pyrene	5.00	4.552		mg/Kg		91	70 - 124	4	20
1,2,4-Trichlorobenzene	5.00	3.545		mg/Kg		71	59 - 120	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	76		14 - 142
2-Fluorophenol (Surr)	75		10 - 123
Nitrobenzene-d5 (Surr)	65		10 - 129
Phenol-d6 (Surr)	76		10 - 120
p-Terphenyl-d14 (Surr)	84		31 - 139
2,4,6-Tribromophenol (Surr)	78		10 - 134

Job ID: 570-95147-1 Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 8270C SIM - PAHs (GC/MS SIM)

Lab Sample ID: MB 570-236468/1-A **Matrix: Solid**

Analysis Batch: 237436

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 236468

7									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.020	0.011	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
2-Methylnaphthalene	ND		0.020	0.010	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Acenaphthene	ND		0.020	0.013	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Acenaphthylene	ND		0.020	0.0096	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Anthracene	ND		0.020	0.0089	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[g,h,i]perylene	ND		0.020	0.011	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[k]fluoranthene	ND		0.020	0.0075	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[a]anthracene	ND		0.020	0.0080	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[a]pyrene	ND		0.020	0.0082	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Benzo[b]fluoranthene	ND		0.020	0.015	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Chrysene	ND		0.020	0.0065	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Dibenz(a,h)anthracene	ND		0.020	0.011	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Fluoranthene	ND		0.020	0.0080	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Fluorene	ND		0.020	0.0097	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.012	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Naphthalene	ND		0.020	0.0089	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Phenanthrene	ND		0.020	0.015	mg/Kg		05/24/22 09:06	05/27/22 10:14	1
Pyrene	ND		0.020	0.0087	mg/Kg		05/24/22 09:06	05/27/22 10:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	73		22 - 130	05/24/22 09:06	05/27/22 10:14	1
Nitrobenzene-d5 (Surr)	70		20 - 145	05/24/22 09:06	05/27/22 10:14	1
p-Terphenyl-d14 (Surr)	81		33 - 147	05/24/22 09:06	05/27/22 10:14	1

Lab Sample ID: LCS 570-236468/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 237436	Spike	LCS	LCS				Prep Batch: 236468 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	0.200	0.1868		mg/Kg		93	54 - 132
2-Methylnaphthalene	0.200	0.1770		mg/Kg		89	50 - 127
Acenaphthene	0.200	0.1665		mg/Kg		83	53 - 125
Acenaphthylene	0.200	0.1955		mg/Kg		98	50 - 123
Anthracene	0.200	0.1791		mg/Kg		90	50 - 132
Benzo[g,h,i]perylene	0.200	0.1680		mg/Kg		84	50 - 130
Benzo[k]fluoranthene	0.200	0.1698		mg/Kg		85	49 - 150
Benzo[a]anthracene	0.200	0.1894		mg/Kg		95	50 - 133
Benzo[a]pyrene	0.200	0.1622		mg/Kg		81	50 - 134
Benzo[b]fluoranthene	0.200	0.1697		mg/Kg		85	50 - 142
Chrysene	0.200	0.1784		mg/Kg		89	51 - 129
Dibenz(a,h)anthracene	0.200	0.1682		mg/Kg		84	50 - 133
Fluoranthene	0.200	0.1761		mg/Kg		88	55 - 127
Fluorene	0.200	0.1760		mg/Kg		88	55 - 127
Indeno[1,2,3-cd]pyrene	0.200	0.1603		mg/Kg		80	50 - 148
Naphthalene	0.200	0.1723		mg/Kg		86	51 - 129
Phenanthrene	0.200	0.1702		mg/Kg		85	50 - 122
Pyrene	0.200	0.1897		mg/Kg		95	50 - 134

Eurofins Calscience

Page 29 of 50

Project/Site: 1002300

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Lab Sample ID: LCS 570-236468/2-A

Matrix: Solid

Analysis Batch: 237436

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 236468

LCS LCS

Surrogate	%Recovery Qualifier	r Limits
2-Fluorobiphenyl (Surr)	77	22 - 130
Nitrobenzene-d5 (Surr)	78	20 - 145
p-Terphenyl-d14 (Surr)	81	33 - 147

Lab Sample ID: LCSD 570-236468/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 237436 Prep Batch: 236468 LCSD LCSD Spike %Rec Added Result Qualifier Unit D %Rec Limits RPD

RPD Analyte Limit 0.200 54 - 132 1-Methylnaphthalene 0.1824 mg/Kg 91 2 20 2-Methylnaphthalene 0.200 0.1751 mg/Kg 88 50 - 127 20 1 Acenaphthene 0.200 0.1694 mg/Kg 85 53 - 125 2 20 Acenaphthylene 0.200 0.1936 mg/Kg 97 50 - 123 20 20 Anthracene 0.200 0.1820 mg/Kg 91 50 - 132 2 97 50 - 130 20 Benzo[g,h,i]perylene 0.200 0.1938 mg/Kg 14 49 - 150 Benzo[k]fluoranthene 0.200 0.1856 93 9 20 mg/Kg Benzo[a]anthracene 92 50 - 133 3 20 0.200 0.1845 mg/Kg 20 Benzo[a]pyrene 0.200 0.1823 91 50 - 134 12 mg/Kg Benzo[b]fluoranthene 0.200 0.1821 mg/Kg 91 50 - 142 7 20 Chrysene 0.200 0.1809 90 51 - 129 20 mg/Kg Dibenz(a,h)anthracene 0.200 0.1853 mg/Kg 93 50 - 133 10 20 Fluoranthene 0.200 81 55 - 127 9 20 0.1616 mg/Kg Fluorene 0.200 0.1723 mg/Kg 86 55 - 127 2 20 0.200 0.1769 88 50 - 148 10 20 Indeno[1,2,3-cd]pyrene mg/Kg 0.200 91 51 - 129 5 20 Naphthalene 0.1814 mg/Kg 87 Phenanthrene 0.200 0.1750 mg/Kg 50 - 122 3 20 Pyrene 0.200 92 3 20 0.1848 mg/Kg 50 - 134

LCSD LCSD

109

Surrogate	%Recovery Qualifie	er Limits
2-Fluorobiphenyl (Surr)	75	22 - 130
Nitrobenzene-d5 (Surr)	74	20 - 145
p-Terphenyl-d14 (Surr)	74	33 - 147

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-233769/1-A

Matrix: Solid

n-Octacosane (Surr)

Analysis Batch: 234059

Client Sample ID: Method Blank Prep Type: Total/NA

05/12/22 13:37 05/13/22 15:12

Prep Batch: 233769

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		5.0	3.8	mg/Kg		05/12/22 13:37	05/13/22 15:12	1
TPH as Motor Oil (C17-C44)	ND		25	11	mg/Kg		05/12/22 13:37	05/13/22 15:12	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

60 - 138

Job ID: 570-95147-1

114

D %Rec

D %Rec

D %Rec

98

115

Client Sample ID: Lab Control Sample Dup

99

80 - 130

%Rec

Limits

%Rec

Limits

%Rec

Limits

77 - 125

80 - 130

77 - 125

Prep Type: Total/NA

Prep Batch: 233769

Prep Batch: 233769

Prep Type: Total/NA

Prep Batch: 233769

RPD

RPD

Client: Eurofins Eaton Analytical Project/Site: 1002300

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 570-233769/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 234059

Prep Type: Total/NA Prep Batch: 233769 Spike LCS LCS %Rec Result Qualifier Added %Rec Limits Analyte Unit

457.0

LCS LCS

LCSD LCSD

LCSD LCSD

390.2

Result Qualifier

461.9

Result Qualifier

395.6

Result Qualifier

mg/Kg

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

400

Spike

Added

400

Diesel Range Organics [C10-C28]

LCS LCS Surrogate %Recovery Qualifier n-Octacosane (Surr)

Limits 60 - 138 112

Lab Sample ID: LCS 570-233769/6-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 234059

Analyte

TPH as Motor Oil (C17-C44)

LCS LCS Limits Surrogate %Recovery Qualifier n-Octacosane (Surr) 60 - 138

Lab Sample ID: LCSD 570-233769/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

> Spike Added

> > 400

Matrix: Solid

Analysis Batch: 234059 Analyte

Diesel Range Organics [C10-C28]

Surrogate n-Octacosane (Surr)

LCSD LCSD %Recovery Qualifier 111

Limits 60 - 138

Lab Sample ID: LCSD 570-233769/7-A

Matrix: Solid

Analysis Batch: 234059

Analyte

TPH as Motor Oil (C17-C44)

Surrogate n-Octacosane (Surr)

LCSD LCSD %Recovery Qualifier 109

MB MB

Limits 60 - 138

Spike

Added

400

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 570-233622/1-A

Matrix: Solid

Analysis Batch: 233627

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 233622

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		5.0	0.72	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
4,4'-DDE	ND		5.0	0.69	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
4,4'-DDT	ND		5.0	1.2	ug/Kg		05/12/22 08:39	05/13/22 09:25	1
Aldrin	ND		5.0	1.6	ug/Kg		05/12/22 08:39	05/13/22 09:25	1

Eurofins Calscience

Page 31 of 50

RPD

Limit

RPD

Limit

20

20

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 570-233622/1-A

Matrix: Solid

Analysis Batch: 233627

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 233622

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac alpha-BHC ND 5.0 0.59 ug/Kg 05/12/22 08:39 05/13/22 09:25 alpha-Chlordane ND 5.0 0.56 ug/Kg 05/12/22 08:39 05/13/22 09:25 beta-BHC ND 5.0 05/12/22 08:39 05/13/22 09:25 0.90 ug/Kg Chlordane ND 25 4.1 ug/Kg 05/12/22 08:39 05/13/22 09:25 delta-BHC ND 5.0 05/12/22 08:39 05/13/22 09:25 0.93 ug/Kg Dieldrin ND 5.0 0.55 ug/Kg 05/12/22 08:39 05/13/22 09:25 Endosulfan I ND 5.0 1.1 ug/Kg 05/12/22 08:39 05/13/22 09:25 ND 5.0 Endosulfan II 0.55 ug/Kg 05/12/22 08:39 05/13/22 09:25 Endosulfan sulfate ND 05/12/22 08:39 05/13/22 09:25 5.0 0.63 ug/Kg Endrin ND 05/12/22 08:39 05/13/22 09:25 5.0 0.67 ug/Kg Endrin aldehyde ND 5.0 05/12/22 08:39 05/13/22 09:25 3.3 ug/Kg Endrin ketone ND 5.0 0.90 ug/Kg 05/12/22 08:39 05/13/22 09:25 gamma-BHC ND 5.0 05/12/22 08:39 05/13/22 09:25 0.51 ug/Kg gamma-Chlordane ND 05/12/22 08:39 05/13/22 09:25 5.0 3.4 ug/Kg Heptachlor ND 5.0 0.60 ug/Kg 05/12/22 08:39 05/13/22 09:25 Heptachlor epoxide ND 5.0 05/12/22 08:39 05/13/22 09:25 0.54 ug/Kg ND 5.0 1.2 ug/Kg Methoxychlor 05/12/22 08:39 05/13/22 09:25 Toxaphene ND 25 15 ug/Kg 05/12/22 08:39 05/13/22 09:25

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	95	37 - 151	05/12/22 08:39	05/13/22 09:25	1
Tetrachloro-m-xvlene	93	38 - 148	05/12/22 08:39	05/13/22 09:25	1

Lab Sample ID: LCS 570-233622/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 233627	Spike	LCS	LCS				Prep Batch: 233622 %Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	25.0	22.63		ug/Kg		91	54 - 154
4,4'-DDE	25.0	22.55		ug/Kg		90	51 - 149
4,4'-DDT	25.0	21.05		ug/Kg		84	39 - 152
Aldrin	25.0	19.97		ug/Kg		80	52 - 138
alpha-BHC	25.0	22.26		ug/Kg		89	51 - 140
alpha-Chlordane	25.0	20.53		ug/Kg		82	53 - 141
beta-BHC	25.0	21.70		ug/Kg		87	53 - 141
delta-BHC	25.0	23.28		ug/Kg		93	20 - 132
Dieldrin	25.0	20.84		ug/Kg		83	52 - 144
Endosulfan I	25.0	19.97		ug/Kg		80	49 - 139
Endosulfan II	25.0	20.92		ug/Kg		84	51 - 150
Endosulfan sulfate	25.0	20.97		ug/Kg		84	45 - 139
Endrin	25.0	16.78		ug/Kg		67	53 - 151
Endrin aldehyde	25.0	21.21		ug/Kg		85	31 - 146
gamma-BHC	25.0	21.83		ug/Kg		87	53 - 141
gamma-Chlordane	25.0	20.81		ug/Kg		83	46 - 156
Heptachlor	25.0	20.58		ug/Kg		82	52 - 144
Heptachlor epoxide	25.0	21.13		ug/Kg		85	54 - 141
Methoxychlor	25.0	12.55	р	ug/Kg		50	47 - 148

Eurofins Calscience

Page 32 of 50

Project/Site: 1002300

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 570-233622/2-A

Matrix: Solid

Surrogate

Analysis Batch: 233627

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 233622

LCS LCS %Recovery Qualifier

Limits DCB Decachlorobiphenyl (Surr) 96 37 - 151 96 38 - 148

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 233622

Lab Sample ID: LCSD 570-233622/3-A

Matrix: Solid

Tetrachloro-m-xylene

Analysis Batch: 233627

Analysis Daton. 200027							i icp be	ALCII. Z	JUULL
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	25.0	23.09		ug/Kg		92	54 - 154	2	30
4,4'-DDE	25.0	22.92		ug/Kg		92	51 - 149	2	28
4,4'-DDT	25.0	21.91		ug/Kg		88	39 - 152	4	31
Aldrin	25.0	20.70		ug/Kg		83	52 - 138	4	30
alpha-BHC	25.0	22.69		ug/Kg		91	51 - 140	2	29
alpha-Chlordane	25.0	21.13		ug/Kg		85	53 - 141	3	28
beta-BHC	25.0	22.13		ug/Kg		89	53 - 141	2	29
delta-BHC	25.0	23.79		ug/Kg		95	20 - 132	2	40
Dieldrin	25.0	21.62		ug/Kg		86	52 - 144	4	28
Endosulfan I	25.0	20.74		ug/Kg		83	49 - 139	4	28
Endosulfan II	25.0	21.51		ug/Kg		86	51 - 150	3	29
Endosulfan sulfate	25.0	21.48		ug/Kg		86	45 - 139	2	30
Endrin	25.0	19.33		ug/Kg		77	53 - 151	14	29
Endrin aldehyde	25.0	20.88		ug/Kg		84	31 - 146	2	40
gamma-BHC	25.0	22.24		ug/Kg		89	53 - 141	2	29
gamma-Chlordane	25.0	21.41		ug/Kg		86	46 - 156	3	39
Heptachlor	25.0	21.11		ug/Kg		84	52 - 144	3	29
Heptachlor epoxide	25.0	21.74		ug/Kg		87	54 - 141	3	29
Methoxychlor	25.0	12.91	р	ug/Kg		52	47 - 148	3	29

LCSD LCSD

Qualifier Surrogate %Recovery Limits DCB Decachlorobiphenyl (Surr) 99 37 - 151 98 38 - 148 Tetrachloro-m-xylene

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MB MB

ND

Lab Sample ID: MB 570-233724/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Aroclor-1268

Analysis Batch: 233928

Prep Type: Total/NA Prep Batch: 233724

05/12/22 11:53 05/13/22 21:52

Result Qualifier **MDL** Unit **Analyte** RL Prepared Analyzed Dil Fac Aroclor-1016 ND 50 39 ug/Kg 05/12/22 11:53 05/13/22 21:52 ug/Kg Aroclor-1221 ND 50 05/12/22 11:53 05/13/22 21:52 Aroclor-1232 ND 50 39 05/12/22 11:53 05/13/22 21:52 ug/Kg Aroclor-1242 50 05/12/22 11:53 05/13/22 21:52 ND 39 ug/Kg Aroclor-1248 ND 50 05/12/22 11:53 05/13/22 21:52 39 ug/Kg Aroclor-1254 ND 50 05/12/22 11:53 05/13/22 21:52 25 ug/Kg ND 50 Aroclor-1260 25 ug/Kg 05/12/22 11:53 05/13/22 21:52 Aroclor-1262 ND 50 25 ug/Kg 05/12/22 11:53 05/13/22 21:52

50

25 ug/Kg

Eurofins Calscience

Page 33 of 50

8

Project/Site: 1002300

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 570-233724/1-A

Matrix: Solid

Analysis Batch: 233928

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 233724

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Polychlorinated biphenyls, Total ND 50 39 ug/Kg 05/12/22 11:53 05/13/22 21:52

MR MR Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 100 20 - 155 05/12/22 11:53 05/13/22 21:52 Tetrachloro-m-xylene (Surr) 83 25 - 126 05/12/22 11:53 05/13/22 21:52

Lab Sample ID: LCS 570-233724/2-A

Matrix: Solid

Analysis Batch: 233928

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 233724

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec Aroclor-1016 100 87.73 ug/Kg 88 50 - 142 Aroclor-1260 100 92.70 ug/Kg 93 50 - 150

LCS LCS

MB MB

%Recovery Qualifier Surrogate Limits DCB Decachlorobiphenyl (Surr) 88 20 - 155 25 - 126 Tetrachloro-m-xylene (Surr)

Lab Sample ID: LCSD 570-233724/3-A

Matrix: Solid

Analysis Batch: 233928

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 233724

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Aroclor-1016 100 98 50 - 142 30 98.24 ug/Kg 11 Aroclor-1260 100 102.7 ug/Kg 103 50 - 150 10 30

LCSD LCSD

Surrogate %Recovery Qualifier Limits 20 - 155 DCB Decachlorobiphenyl (Surr) 104 Tetrachloro-m-xylene (Surr) 25 - 126

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 570-234174/1-A

Matrix: Solid

Analysis Batch: 235864

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 234174

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		10	3.7	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
2,4,5-TP (Silvex)	ND		10	7.5	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
2,4-D	ND		100	49	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
2,4-DB	ND		100	100	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dalapon	ND		250	72	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dicamba	ND		10	4.7	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dichlorprop	ND		100	49	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
Dinoseb	ND		100	59	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
MCPA	ND		10000	4900	ug/Kg		05/17/22 15:21	05/20/22 16:41	1
MCPP	ND		10000	6600	ug/Kg		05/17/22 15:21	05/20/22 16:41	1

Eurofins Calscience

5/27/2022

Page 34 of 50

Project/Site: 1002300

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: MB 570-234174/1-A **Matrix: Solid**

Analysis Batch: 235864

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 234174

MB MB

%Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 05/17/22 15:21 05/20/22 16:41 2,4-Dichlorophenylacetic acid 46 20 - 163

Lab Sample ID: LCS 570-234174/2-A

Matrix: Solid

Analysis Batch: 235557

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec

Prep Batch: 234174

Spike LCS LCS Added Result Qualifier Limits **Analyte** Unit D %Rec 2,4,5-T 40.0 55.28 ug/Kg 138 36 - 125 215.7 p 2.4-D 400 ug/Kg 54 10 - 177 400 925.9 *+ 2,4-DB ug/Kg 231 35 - 180

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 20 - 163

Lab Sample ID: LCSD 570-234174/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 235557

Prep Type: Total/NA

Prep Batch: 234174

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 56.31 *+ 2 2,4,5-T 40.0 141 36 - 125 35 ug/Kg ug/Kg 2,4-D 400 319.1 80 39 40 10 - 177 400 579.2 *1 2.4-DB ug/Kg 145 35 - 180 46 40

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 20 - 163 72

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-233806/1-A Client Sample ID: Method Blank

Matrix: Solid

Matrix: Solid

Analysis Batch: 235048

Prep Type: Total/NA

Prep Batch: 233806

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Selenium $\overline{\mathsf{ND}}$ 2.99 1.22 05/12/22 15:27 05/18/22 04:45 mg/Kg

Lab Sample ID: LCS 570-233806/2-A ^5

Analysis Batch: 235048

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 233806

Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit %Rec Limits Selenium 49.8 43.58 mg/Kg 88 80 - 120

Lab Sample ID: LCSD 570-233806/3-A ^5

Matrix: Solid

Analysis Batch: 235048

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

> Prep Batch: 233806 %Rec **RPD**

Spike LCSD LCSD Added Limits RPD Analyte Result Qualifier Unit %Rec Limit 50.5 20 Selenium 42.69 mg/Kg 85 80 - 120

Eurofins Calscience

Project/Site: 1002300

Method: 6010B - Metals (ICP) (Continued)

MD MD

Lab Sample ID: MB 570-236024/1-A ^5

Matrix: Solid

Analysis Batch: 236320

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 236024

	MB	VID							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		10.1	8.74	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Arsenic	ND		3.02	1.40	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Barium	ND		3.02	0.143	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Beryllium	ND		0.503	0.0693	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Cadmium	ND		0.503	0.0834	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Chromium	ND		1.01	0.187	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Cobalt	ND		1.01	0.207	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Copper	ND		2.01	0.963	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Lead	ND		2.01	0.411	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Molybdenum	ND		2.01	0.190	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Nickel	ND		2.01	0.364	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Silver	ND		1.51	0.145	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Thallium	ND		10.1	7.09	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Vanadium	ND		1.01	0.169	mg/Kg		05/21/22 12:45	05/23/22 13:44	5
Zinc	ND		5.03	1.16	mg/Kg		05/21/22 12:45	05/23/22 13:44	5

Lab Sample ID: LCS 570-236024/2-A ^5

Matrix: Solid

Analysis Batch: 236320

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 236024

Analysis Balcii. 230320							Prep Batch. 23002
	Spike	LCS L	_CS				%Rec
Analyte	Added	Result C	Qualifier	Unit	D	%Rec	Limits
Antimony	49.0	57.29		mg/Kg		117	80 - 120
Arsenic	49.0	45.80		mg/Kg		93	80 - 120
Barium	49.0	49.34		mg/Kg		101	80 - 120
Beryllium	49.0	48.33		mg/Kg		99	80 - 120
Cadmium	49.0	46.29		mg/Kg		94	80 - 120
Chromium	49.0	49.83		mg/Kg		102	80 - 120
Cobalt	49.0	47.99		mg/Kg		98	80 - 120
Copper	49.0	49.25		mg/Kg		100	80 - 120
Lead	49.0	47.86		mg/Kg		98	80 - 120
Molybdenum	49.0	51.61		mg/Kg		105	80 - 120
Nickel	49.0	48.25		mg/Kg		98	80 - 120
Silver	24.5	24.68		mg/Kg		101	80 - 120
Thallium	49.0	47.67		mg/Kg		97	80 - 120
Vanadium	49.0	49.07		mg/Kg		100	80 - 120
Zinc	49.0	45.38		mg/Kg		93	80 - 120

Lab Sample ID: LCSD 570-236024/3-A ^5

Matrix: Solid

Analysis Batch: 236320

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 236024

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec Antimony 49.3 56.21 mg/Kg 114 80 - 120 2 20 Arsenic 49.3 46.55 80 - 120 2 20 mg/Kg 94 Barium 49.3 49.57 mg/Kg 101 80 - 120 20 Beryllium 49.3 48.63 mg/Kg 99 80 - 120 20 Cadmium 49.3 46.44 mg/Kg 94 80 - 120 20 Chromium 49.3 50.11 mg/Kg 102 80 - 120 20 Cobalt 49.3 48.24 mg/Kg 98 80 - 120 20

Eurofins Calscience

Page 36 of 50

2

3

4

6

8

10

12

13

Project/Site: 1002300

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 570-236024/3-A ^5 **Matrix: Solid**

Analysis Batch: 236320

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 236024

LCSD LCSD %Rec **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Copper 49.3 49 54 mg/Kg 101 80 - 120 20 1 Lead 49.3 48.58 mg/Kg 99 80 - 120 2 20 49.3 80 - 120 20 Molybdenum 51.92 mg/Kg 105 Nickel 49.3 48.37 mg/Kg 98 80 - 120 O 20 Silver 24.6 24.79 101 80 - 120 0 20 mg/Kg 49.3 47.80 20 Thallium mg/Kg 97 80 - 120 0 Vanadium 49.3 49.33 mg/Kg 100 80 - 120 20 Zinc 49.3 45.32 mg/Kg 92 20 80 - 120 0

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 570-233749/1-A

Matrix: Solid

Analysis Batch: 234080

MB MB

MR MR

Result Qualifier Analyte RI **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 0.0833 0.0135 mg/Kg 05/12/22 16:44 05/13/22 14:44

Lab Sample ID: LCS 570-233749/2-A

Matrix: Solid

Analysis Batch: 234080

Analyte Mercury

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits 0.385 0.4121 mg/Kg 107 85 - 121

Unit

mg/Kg

LCSD LCSD

0.4219

Result Qualifier

Lab Sample ID: LCSD 570-233749/3-A

Matrix: Solid

Analysis Batch: 234080

Analyte

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 570-234061/1-A

Matrix: Solid

Mercury

Analysis Batch: 234274

Client Sample ID: Method Blank

%Rec

Limits

85 - 121

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

%Rec

108

Prep Type: Total/NA

Prep Batch: 233749

Prep Type: Total/NA **Prep Batch: 233749**

Prep Type: Total/NA

Prep Batch: 233749

RPD

2

Limit

Prep Type: Total/NA

Prep Batch: 234061

Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM: Oil and Grease	ND ND	50.0	30.2	mg/Kg		05/13/22 11:53	05/13/22 11:53	1
HEM-SGT: Oil and Grease	ND	50.0	13.9	mg/Kg		05/13/22 11:53	05/13/22 11:53	1

Lab Sample ID: LCS 570-234061/2-A

Matrix: Solid

Analysis Batch: 234274

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 234061

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits D HEM: Oil and Grease 333 310.0 mg/Kg 93 78 - 114 HEM-SGT: Oil and Grease 167 153.3 mg/Kg 92 64 - 132

Spike

Added

0.392

Job ID: 570-95147-1 Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method: 1664A - HEM and SGT-HEM (Continued)

Lab Sample ID: LCSD 570-234061/3-A		Client Sample ID: Lab Control Sample Dup								
Matrix: Solid					-		Prep Ty	pe: Tot	al/NA	
Analysis Batch: 234274							Prep Ba	•		
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
HEM: Oil and Grease	333	323.3		mg/Kg		97	78 - 114	4	18	
HEM-SGT: Oil and Grease	167	150.0		ma/Ka		90	64 132	2	34	

Lab Sample ID: 570-95147-1 MS							Clie	Client Sample ID: 202205050002		
Matrix: Solid									Prep Type: Total/NA	
Analysis Batch: 234274									Prep Batch: 234061	
_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
HEM: Oil and Grease	53.1	H	332	381.9		mg/Kg		99	78 - 114	
HEM-SGT: Oil and Grease	29.9	JΗ	166	179.3		mg/Kg		90	64 - 132	

Lab Sample ID: 570-95147-1 MSD Matrix: Solid Analysis Batch: 234274					Clie	ent Sam	ple ID: 20 Prep Ty Prep Ba	pe: Tot	al/NA		
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HEM: Oil and Grease	53.1	Н	332	374.9		mg/Kg		97	78 - 114	2	18
HEM-SGT: Oil and Grease	29.9	JH	166	175.8		mg/Kg		88	64 - 132	2	34

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

GC/MS VOA

Analysis Batch: 234588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8260B	234601
MB 570-234601/3-A	Method Blank	Total/NA	Solid	8260B	234601
LCS 570-234601/1-A	Lab Control Sample	Total/NA	Solid	8260B	234601
LCSD 570-234601/2-A	Lab Control Sample Dup	Total/NA	Solid	8260B	234601
570-95147-1 MS	202205050002	Total/NA	Solid	8260B	234601
570-95147-1 MSD	202205050002	Total/NA	Solid	8260B	234601

Prep Batch: 234601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	5030C	
MB 570-234601/3-A	Method Blank	Total/NA	Solid	5030C	
LCS 570-234601/1-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 570-234601/2-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
570-95147-1 MS	202205050002	Total/NA	Solid	5030C	
570-95147-1 MSD	202205050002	Total/NA	Solid	5030C	

GC/MS Semi VOA

Prep Batch: 233796

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 3546	Prep Batch
MB 570-233796/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-233796/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-233796/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 235117

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 8270C	Prep Batch 233796
MB 570-233796/1-A	Method Blank	Total/NA	Solid	8270C	233796
LCS 570-233796/2-A	Lab Control Sample	Total/NA	Solid	8270C	233796
LCSD 570-233796/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C	233796

Prep Batch: 236468

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3546	
MB 570-236468/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-236468/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-236468/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 237091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8270C SIM	236468

Analysis Batch: 237436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-236468/1-A	Method Blank	Total/NA	Solid	8270C SIM	236468
LCS 570-236468/2-A	Lab Control Sample	Total/NA	Solid	8270C SIM	236468
LCSD 570-236468/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C SIM	236468

Eurofins Calscience

Page 39 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

GC Semi VOA

Prep	Batc	h: 2	233	622
-------------	-------------	------	-----	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3546	
MB 570-233622/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-233622/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-233622/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 233627

Lab Sample ID MB 570-233622/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8081A	Prep Batch 233622
LCS 570-233622/2-A	Lab Control Sample	Total/NA	Solid	8081A	233622
LCSD 570-233622/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	233622

Prep Batch: 233724

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 3546	Prep Batch
MB 570-233724/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-233724/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-233724/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Prep Batch: 233769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	3550C	<u> </u>
MB 570-233769/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-233769/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCS 570-233769/6-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-233769/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
LCSD 570-233769/7-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Analysis Batch: 233928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-233724/1-A	Method Blank	Total/NA	Solid	8082	233724
LCS 570-233724/2-A	Lab Control Sample	Total/NA	Solid	8082	233724
LCSD 570-233724/3-A	Lab Control Sample Dup	Total/NA	Solid	8082	233724

Analysis Batch: 234059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8015B	233769
MB 570-233769/1-A	Method Blank	Total/NA	Solid	8015B	233769
LCS 570-233769/2-A	Lab Control Sample	Total/NA	Solid	8015B	233769
LCS 570-233769/6-A	Lab Control Sample	Total/NA	Solid	8015B	233769
LCSD 570-233769/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	233769
LCSD 570-233769/7-A	Lab Control Sample Dup	Total/NA	Solid	8015B	233769

Prep Batch: 234174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8151A	
MB 570-234174/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 570-234174/2-A	Lab Control Sample	Total/NA	Solid	8151A	
LCSD 570-234174/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	

Eurofins Calscience

Page 40 of 50

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

GC Semi VOA

Analy	vsis	Batch:	234290

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8081A	233622

Analysis Batch: 234344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8082	233724

Analysis Batch: 235557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	8151A	234174
LCS 570-234174/2-A	Lab Control Sample	Total/NA	Solid	8151A	234174
LCSD 570-234174/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	234174

Analysis Batch: 235864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-234174/1-A	Method Blank	Total/NA	Solid	8151A	234174

Metals

Prep Batch: 233749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	7471A	
MB 570-233749/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-233749/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 570-233749/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	

Prep Batch: 233806

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Matrix Solid	Method 3050B	Prep Batch
MB 570-233806/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-233806/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-233806/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 234080

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	7471A	233749
MB 570-233749/1-A	Method Blank	Total/NA	Solid	7471A	233749
LCS 570-233749/2-A	Lab Control Sample	Total/NA	Solid	7471A	233749
LCSD 570-233749/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	233749

Analysis Batch: 235048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	6010B	233806
MB 570-233806/1-A	Method Blank	Total/NA	Solid	6010B	233806
LCS 570-233806/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	233806
LCSD 570-233806/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	233806

Prep Batch: 236024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
570-95147-1	202205050002	Total/NA	Solid	3050B	
MB 570-236024/1-A ^5	Method Blank	Total/NA	Solid	3050B	
LCS 570-236024/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B	

Eurofins Calscience

5/27/2022

Page 41 of 50

6

3

4

6

7

9

11

12

14

15

I.

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Metals (Continued)

Prep Batch: 236024 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 570-236024/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 236320

Lab Sample ID 570-95147-1	Client Sample ID 202205050002	Prep Type Total/NA	Solid	Method 6010B	Prep Batch 236024
MB 570-236024/1-A ^5	Method Blank	Total/NA	Solid	6010B	236024
LCS 570-236024/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	236024
LCSD 570-236024/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	236024

General Chemistry

Prep Batch: 234061

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-95147-1	202205050002	Total/NA	Solid	1664A		
MB 570-234061/1-A	Method Blank	Total/NA	Solid	1664A		
LCS 570-234061/2-A	Lab Control Sample	Total/NA	Solid	1664A		
LCSD 570-234061/3-A	Lab Control Sample Dup	Total/NA	Solid	1664A		
570-95147-1 MS	202205050002	Total/NA	Solid	1664A		
570-95147-1 MSD	202205050002	Total/NA	Solid	1664A		

Analysis Batch: 234274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-95147-1	202205050002	Total/NA	Solid	1664A	234061
MB 570-234061/1-A	Method Blank	Total/NA	Solid	1664A	234061
LCS 570-234061/2-A	Lab Control Sample	Total/NA	Solid	1664A	234061
LCSD 570-234061/3-A	Lab Control Sample Dup	Total/NA	Solid	1664A	234061
570-95147-1 MS	202205050002	Total/NA	Solid	1664A	234061
570-95147-1 MSD	202205050002	Total/NA	Solid	1664A	234061

Lab Chronicle

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Client Sample ID: 202205050002

Date Collected: 04/12/22 11:50 Date Received: 05/06/22 10:15 Lab Sample ID: 570-95147-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			5.08 g	5 mL	234601	05/17/22 01:41	G6NI	ECL 4
Total/NA	Analysis Instrumer	8260B at ID: GCMSLL		1	5 mL	5 mL	234588	05/17/22 03:10	N1A	ECL 4
Total/NA	Prep	3546			19.96 g	2 mL	233796	05/12/22 15:08	SP9M	ECL 4
Total/NA	Analysis Instrumer	8270C at ID: GCMSTT		1			235117	05/18/22 15:30	N8CZ	ECL 4
Total/NA	Prep	3546			9.99 g	2 mL	236468	05/25/22 08:49	SP9M	ECL 4
Total/NA	Analysis Instrumer	8270C SIM at ID: GCMSAAA		1			237091	05/26/22 20:46	ULLI	ECL 4
Total/NA	Prep	3550C			10.32 g	10 mL	233769	05/12/22 13:37	KG5J	ECL 4
Total/NA	Analysis Instrumer	8015B at ID: GC47		1			234059	05/14/22 03:26	A1W	ECL 4
Total/NA	Prep	3546			20.06 g	10 mL	233622	05/12/22 15:30	SP9M	ECL 4
Total/NA	Analysis Instrumer	8081A at ID: GC52A		1			234290	05/16/22 08:17	UHHN	ECL 4
Total/NA	Prep	3546			20.06 g	10 mL	233724	05/12/22 15:32	SP9M	ECL 4
Total/NA	Analysis Instrumer	8082 at ID: GC81A		1			234344	05/16/22 13:23	UHHN	ECL 4
Total/NA	Prep	8151A			50.27 g	5 mL	234174	05/17/22 15:21	J7WE	ECL 4
Total/NA	Analysis Instrumer	8151A at ID: GC41		1			235557	05/19/22 23:30	J7WE	ECL 4
Total/NA	Prep	3050B			2.03 g	50 mL	236024	05/21/22 12:45		ECL 4
Total/NA	Analysis Instrumer	6010B at ID: ICP10		5			236320	05/23/22 14:59	P1R	ECL 4
Total/NA	Prep	3050B			1.95 g	50 mL	233806	05/12/22 15:27	CS5Z	ECL 4
Total/NA	Analysis Instrumer	6010B at ID: ICP11		5			235048	05/18/22 05:50	P1R	ECL 4
Total/NA	Prep	7471A			0.52 g	50 mL	233749	05/12/22 16:44	SR3N	ECL 4
Total/NA	Analysis Instrumer	7471A at ID: HG8		1	-		234080	05/13/22 15:19	VWJ7	ECL 4
Total/NA	Prep	1664A			30.15 g	30 g	234061	05/13/22 11:53	USUL	ECL 4
Total/NA	Analysis Instrumer	1664A t ID: NOEQUIP		1	-	-	234274	05/13/22 11:53	L6IE	ECL 4

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Eurofins Calscience

2

4

6

10

12

14

113

Accreditation/Certification Summary

Client: Eurofins Eaton Analytical Job ID: 570-95147-1

Project/Site: 1002300

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	1	Program	Identification Number	Expiration Date
California		State	2944	09-30-22
The following analytes the agency does not d		port, but the laboratory is ı	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
1664A	1664A	Solid	HEM: Oil and Grease	
1664A	1664A	Solid	HEM-SGT: Oil and Grease	
Oregon	I	NELAP	CA300001	01-31-23
The following analytes the agency does not d		port, but the laboratory is ı	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8082	3546	Solid	Polychlorinated biphenyls, T	otal

Method Summary

Client: Eurofins Eaton Analytical

Project/Site: 1002300

Method **Method Description** Protocol Laboratory Volatile Organic Compounds (GC/MS) 8260B SW846 ECL 4 8270C Semivolatile Organic Compounds (GC/MS) SW846 ECL 4 8270C SIM PAHs (GC/MS SIM) SW846 ECL 4 8015B Diesel Range Organics (DRO) (GC) SW846 ECL 4 8081A Organochlorine Pesticides (GC) SW846 ECL 4 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography ECL 4 SW846 8151A Herbicides (GC) SW846 ECL 4 6010B Metals (ICP) SW846 ECL 4 7471A Mercury (CVAA) SW846 ECL 4 HEM and SGT-HEM 1664A ECL 4 1664A 1664A HEM and SGT-HEM (Solid) 1664A ECL 4 3050B Preparation, Metals SW846 ECL 4 ECL 4 3546 Microwave Extraction SW846 3550C Ultrasonic Extraction SW846 ECL 4 5030C Purge and Trap SW846 ECL 4 7471A SW846 ECL 4 Preparation, Mercury Extraction (Herbicides) SW846 ECL 4 8151A

Protocol References:

1664A = EPA-821-98-002

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Job ID: 570-95147-1

3

4

-

9

10

12

13

15

Sample Summary

Client: Eurofins Eaton Analytical Project/Site: 1002300

Job ID: 570-95147-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-95147-1	202205050002	Solid	04/12/22 11:50	05/06/22 10:15

*REPORTING REQUIRMENTS: Do Not Combine Reports with any other samples submitted under different Folder Numbersl Report & Invoice must have the Folder# 1002300 Job # 1000014

Taior ana yr ca

: eurofins

Eurofins Calscience

Ship To:

2841 Dow Avenue

Tustin, CA 92780

Submittal Form

Date: 5/5/2022

Report all quality control data according to Method, Include dates analyzed. Date extracted (if extracted) and Method reference on the report. Results must have Complete data & QC with Approval Signature.

EMAIL TO: Eaton-MonroviaSubContract@eurofinset.com Eurofins Eaton Analytical, LLC 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Phone (626) 386-1165 Fax (626) 386-1122 Reports: Jackie Contreras Sub-Contracting Administrator

Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605

Fax. 714-894-7501

Phone 714-895-5494

Invoices to: Eurofins Eaton Analytical, LLC

Exp Date for requested tests + matrix. Provide in each Report the Specified StateCertification # and Samples from CALIFORNIA

95147 Loc: 570

> Report Due: 05/11/2022 Folder #: 1002300

202205050002

Sample ID

Sample type:

Clip Code Sample Date & Time Matrix 04/12/22 1150 DW Sample Point ID: Facility ID: Client Sample ID for reference onl Site #1

Sample Event:

PWSID

Static ID:

Chain of Custody 570-95147

Analysis Requested	Chromium TTLC Subbed	Arsenic TTLC Subbed	Nickel TTLC Subbed	Barium TTLC Subbed	Antimony TTLC Subbed	Cadmium TTLC Subbed	Beryllium TTLC Subbed	Cobalt TTLC Subbed	Copper TTLC Subbed	Lead TTLC Subbed	Molybdenum TTLC Subbed	Selenium TTLC Subbed	Silver TTLC Subbed	Thallium TTLC Subbed	Vanadium TTLC Subbed	Zinc TTLC Subbed	Mercury TTLC Subbed
Prep Method	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 3050B	EPA 7471A
-Method	Ø EPA 6010	VEPA 6010	QEPA 6010	GEPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 6010	EPA 7471A

An Acknowledgement of Receipt is requested to attn. Jackie Contreras NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS いら Time 11:16

12/1.9 12/23

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www EurofinsUS com/Eaton

Time Time,

Sample Control

Relinquished by:

d bears in b

Relinquished by:

Received by:

Date J Date Date

Time Page 1 of 2

Sample ID 202205050002	Client Sample II Site #1	Client Sample ID for reference on! Site #1	Sample Date & Time Matrix 04/12/22 1150 DW	Clip Code PWSID	ST
Sample type:	19	Sample Event: Facility ID:	Sample Point ID:	Static ID:	
Method	Prep Method	Analysis Requested			
EPA 8081A	EPA 3545	5157_8081 Standard List			
EPA 8082	EPA 3545	8082			
EPA 8151A	EPA 8151A	576 - Chlorinated Herbicides			
EPA 8260B	EPA 5030C	Volatile Organic Compounds by EPA 8260B			
EPA 8270C		8270C PAH SIM			
EPA 8270C	EPA 3510C	8270			
EPA 1664 HEM-SGT		Oil and Grease by 1664 HEM SGT			
SW-846 9071B		Oil and Grease			
EPA 8015M	EPA 3550B	6231 Motor Oil and 6232 Diesel			

NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS	An Acknowledgement of Receipt Is requested to attn. Jackie Contreras
_ 1	ty of
311	0

Date 1/6/22 Time_ Date 55-22_ Time 1 Time Page 2 of 2 Time Date Date 5 Sample Control CU Sample Control Relinquished by Received by 2/27/2025 Relinquished by: Received by:

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www EurofinsUS com/Eaton

ORIGIN ID: WHPA (626) 386-1100
MANUEL A. VASQUEZ
EUROFINS EATON ANALYTICAL
750 ROYAL DAKS DR SUITE 100

MONROVIA, CA 91016
UNITED STATES US

TO

EUROFINS CALSCIENCE
2841 DOW AVE
SUITE 100
TUSTIN CA 92780

DEPT: SUBOUTS/LOG-IN

DEPT: SUBOUTS/LOG-IN

DEPT: SUBOUTS/LOG-IN


TRK# 5717 5703 5102

FRI - 06 MAY 10:30A PRIORITY OVERNIGHT

92 DTHA

Part # 156697-434 RRDB2

92780 ca-us- SNA

570-95147 Waybill

Login Sample Receipt Checklist

Client: Eurofins Eaton Analytical Job Number: 570-95147-1

Login Number: 95147 List Source: Eurofins Calscience

List Number: 1 Creator: Luu, Sheila

Creator. Luu, Silella		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

o

11

13

14

1